Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21040222-15    https://doi.org/10.11896/cldb.21040222
  金属与金属基复合材料 |
镍基单晶高温合金力学性能各向异性的研究进展
窦学铮1,2, 蒋立武1,3,*, 宋尽霞2, 赵云松2,*
1 北京科技大学国家材料服役安全科学中心,北京 100083
2 中国航发北京航空材料研究院先进高温结构材料重点实验室,北京 100095
3 钢研纳克检测技术股份有限公司,北京 100081
Research Progress on Anisotropy of Mechanical Properties for Nickel Based Single Crystal Superalloys
DOU Xuezheng1,2, JIANG Liwu1,3,*, SONG Jinxia2, ZHAO Yunsong2,*
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083,China
2 Key Laboratory of Advanced High Temperature Structural Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095,China
3 NCS Testing Technology Co., Ltd., Beijing 100081, China
下载:  全 文 ( PDF ) ( 53985KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍基单晶高温合金凭借优良的高温力学性能和组织稳定性而成为目前制造先进航空发动机和燃气轮机叶片的主要材料,其力学性能各向异性对涡轮叶片的服役性能和安全可靠性至关重要,受到叶片设计师和制造专家的高度重视。为了满足更严苛的使用要求,国内外都在不断研发新型的镍基单晶高温合金来提升叶片承温能力,但是对新型合金力学性能各向异性的研究还不是很全面,对新添加元素的作用机理也有待进一步的研究。
近些年来,国内外相关研究表明,镍基单晶高温合金力学性能各向异性与温度、应力等因素有关,不同的单晶合金表现出不同的规律。镍基单晶高温合金的拉伸性能具有明显的各向异性,随着温度的升高,其原子扩散能力增强,开动滑移系的数量增多,拉伸性能的各向异性减弱。随着合金成分中难熔元素含量的增加,滑移系的位错交截概率或变形协调性发生变化,合金表现出不同的拉伸性能各向异性。在中温高应力条件下,合金蠕变性能存在显著的各向异性。随着应力的升高,[001]取向的蠕变性能显著降低,[111]取向变化较小,这与应力变化对滑移系数量的影响有关。随着难熔元素含量的增加,合金不同取向滑移系的开动和层错的形成更容易,从而影响蠕变性能的各向异性。在高温低应力条件下,[111]取向蠕变性能较好,[001]和[011]取向较差,但蠕变各向异性减弱。低周疲劳性能也具有明显的各向异性,[001]取向的疲劳寿命最长,[011]取向次之,[111]取向最短;而高周疲劳性能按[111]、[001]、[011]取向的顺序依次降低,主要与弹性模量、滑移系开动的数量和Schmid因子等因素有关。
本文详细介绍了镍基单晶高温合金拉伸、蠕变、疲劳等力学性能各向异性的研究进展,揭示了不同晶体取向合金的失效机理,分析了新型镍基单晶高温合金力学性能各向异性相关研究存在的问题并展望其前景,以期为未来镍基单晶高温合金在航空发动机涡轮叶片上的应用提供有益参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
窦学铮
蒋立武
宋尽霞
赵云松
关键词:  镍基单晶高温合金  各向异性  晶体取向  力学性能  失效机理    
Abstract: Nickel based single crystal superalloy has become the main material for the manufacture of advanced aero-engine and gas turbine blades due to its excellent high temperature mechanical property and microstructure stability. The anisotropy of mechanical property for nickel based single crystal superalloy is very important for the service property, safety and reliability of turbine blades, which has been highly valued by turbine blade designers and manufacturing experts. In order to meet the more stringent application requirements, new nickel based single crystal superalloys have been constantly developed at home and abroad to improve the temperature bearing capacity of aero-engine blades. However, the research on the anisotropy of mechanical property for new alloys is not very comprehensive, and the mechanism of newly added elements needs to be further studied.
In recent years, the research at home and abroad shows that the anisotropy of mechanical property for nickel based single crystal superalloy is related to temperature, stress and other factors. Meanwhile, different single crystal superalloys show different laws of anisotropy. The tensile property of nickel based single crystal superalloy has obvious anisotropy. With the increase of temperature, the ability of atomic diffusion and the number of slip systems increases, and the anisotropy of tensile property decreases. With the increase on the content of refractory elements in the alloy composition, the dislocation cross-section probability or deformation compatibility of the slip system will change, showing different tensile anisotropy. Under the condition of medium temperature and high stress, there is significant anisotropy in creep property. With the increase of stress, the creep property of the alloy with [001] orientation decreases significantly, and the creep property of the alloy with [111] orientation changes little, which is related to the effect of stress change on the number of slip systems. With the increase on the content of refractory elements, it is easier to start the slip systems with different orientations and form stacking faults, which affects the anisotropy of creep property. Under the condition of high temperature and low stress, the anisotropy of creep property is weakened, the creep property of the alloy with [111] orientation is better, and the creep property of the alloy with [001] and [011] orientation is poor. The low cycle fatigue property of nickel based single crystal superalloy also has obvious anisotropy. The fatigue life of the alloy with [001] orientation is the longest, followed by the alloy with [011] orientation, and the alloy with [111] orientation is the shortest. The high cycle fatigue property decreases in the order of [111], [001] and [011] orientation, which is mainly related to the elastic modulus, the number of slip systems and Schmid factor.
This article introduces the research progress on anisotropy of mechanical properties such as tensile, creep and fatigue property of nickel based single crystal superalloys in detail. The failure mechanism of alloys with different crystal orientations is revealed. The problems of the anisotropy of new nickel-based single crystal superalloy are stuclied and its prospects are discussed. The purpose is to provide a useful reference for the application of nickel base single crystal superalloy in aero-engine turbine blades in the future.
出版日期:  2022-12-28      发布日期:  2023-01-03
ZTFLH:  TG132.3+2  
基金资助: 国家自然科学基金(92060103);国家科技重大专项(2017-VI-0012-0084;2017-VI-0011-0083)
通讯作者:  lwjiang@ustb.edu.cn;yunsongzhao@163.com   
作者简介:  窦学铮,2019年6月毕业于北京科技大学,获得材料化学专业工学学士学位。2022年1月毕业于北京科技大学,获得材料科学与工程专业工学硕士学位。现为中国航发北京航空材料研究院助理工程师。目前主要研究方向为镍基高温合金微观组织和力学性能。硕士期间在Progress in Natural Science: Materials International、International Journal of Photoenergy各发表论文1篇,在EI期刊《稀有金属》发表中文论文1篇。
蒋立武,博士,北京科技大学国家材料服役安全科学中心副研究员、项目博导。2005年7月本科毕业于河北工业大学,获得材料科学与工程专业学士学位。2010年12月毕业于北京航空航天大学,获得材料学专业博士学位。现任北京科技大学国家材料服役安全科学中心科研管理部主任。主要从事高温结构材料研发、服役行为表征、先进表征技术开发、材料性能模拟等研究工作。主持承担两机专项、国家自然科学基金重大研究计划、面上项目、青年基金项目和航空科学基金等项目。作为主要参与人参加国家重点研发计划重点专项、国家重大仪器设备开发专项、国家自然科学基金、“863项目”、“973项目”、总装预研项目等多项国家科研项目。近年来,在高温结构材料领域发表论文30余篇,获中国材料研究学会科学技术奖一等奖1项,出版学术专著1部,国家授权专利5项。
赵云松,2011年本科毕业于北京科技大学,获得工学学士学位。2017年博士毕业于北京科技大学,获得工学博士学位。现为中国航发北京航空材料研究院研究员,主要研究方向为航空发动机新一代镍基单晶高温合金及涡轮叶片工程化应用。近五年来在Acta Materialia等期刊上发表论文30余篇,申请专利8项,授权3项。作为负责人承担国家自然科学基金2项、北京市自然科学基金1项、国防科工局大飞机材料专项2项、航发集团重大攻关课题3项。
引用本文:    
窦学铮, 蒋立武, 宋尽霞, 赵云松. 镍基单晶高温合金力学性能各向异性的研究进展[J]. 材料导报, 2022, 36(24): 21040222-15.
DOU Xuezheng, JIANG Liwu, SONG Jinxia, ZHAO Yunsong. Research Progress on Anisotropy of Mechanical Properties for Nickel Based Single Crystal Superalloys. Materials Reports, 2022, 36(24): 21040222-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040222  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21040222
1 Esaka H, Shinozuka K, Tamura M. Materials Science and Engineering, A, 2005, 413, 151.
2 Wang J. China New Telecommunications, 2019(1), 177 (in Chinese).
王君. 中国新通信, 2019(1), 177.
3 Zhang J, Wang L, Wang D, et al. Acta Metallurgica Sinica, 2019, 55(9), 1077 (in Chinese).
张健, 王莉, 王栋, 等. 金属学报, 2019, 55(9), 1077.
4 Sun X F, Jin T, Zhou Y Z, et al. Materials China, 2012, 31(12), 1 (in Chinese).
孙晓峰, 金涛, 周亦胄, 等. 中国材料进展, 2012, 31(12), 1.
5 Zhao Y S, Liu Y F, Zhao J X, et al. Materials Science Forum, 2019, 944, 8.
6 Barnett R, Mueller S, Hiller S, et al. Optics and Lasers in Engineering, 2020, 127(4), 105941.
7 Qin L, Pei Y, Li S, et al. Materials & Design, 2017, 130, 69.
8 Wunderlich R K, Fecht H, Lohöfer G. Metallurgical and Materials Transactions B, 2017, 48(2), 237.
9 Lv X Z, Zhang J X, Harada H. International Journal of Fatigue, 2014, 66(18), 246.
10 Sun F, Zhang S, Tian S, et al. Materials Science and Technology, 2015, 31(2), 237.
11 Argence D, Ernault C, Desvallées Y, et al. Superalloys, DOI:10.7449/2000/Superalloys_2000_829_837.
12 Nobuyasu T, Akihiro S, Katsushi T, et al. Advanced Materials Research, 2011, 278, 19.
13 Zhang J X, Koizumi Y, Kobayashi T, et al. Metallurgical & Materials Transactions Part A, 2004, 35(6), 1911.
14 Sato A, Harada H, Kobayashi T, et al. Journal of the Japan Institute of Metals, 2006, 70(2), 196.
15 Takebe Y, Yokokawa T, Kobayashi T, et al. Journal of the Japan Institute of Metals and Materials, 2015, 79(4), 227.
16 Yue Q Z, Liu L, Yang W C, et al. Materials Reports A:Review Papers, 2019, 33(2), 479(in Chinese).
岳全召, 刘林, 杨文超, 等. 材料导报:综述篇, 2019, 33(2), 479.
17 Zhao N R, Wang Z H, Li J G, et al. Journal of Materials Engineering, 2008(8), 58(in Chinese).
赵乃仁, 王志辉, 李金国, 等. 材料工程, 2008(8), 58.
18 Cong P J, Hou J S, Zhou L Z, et al. The Chinese Journal of Nonferrous Metals, 2001, 21(4), 747(in Chinese).
丛培娟, 侯介山, 周兰章, 等. 中国有色金属学报, 2001, 21(4), 747.
19 Eckhard N. Materials Science and Engineering A, 2006, 429, 277.
20 Patric V. Materials Science and Engineering A, 2001, 309-310, 44.
21 Kobe M. Materials Science and Engineering A, 2001, 319-321, 383.
22 Mohles V. Materials Science and Engineering A, 2004, 365, 144.
23 Feller-Kniepmeier M, Link T, Poschmann I, et al. Acta Materialia, 1996, 44, 2397.
24 Shah D M, Duhl D N, Gell M. Superalloys, DOI:10.7449/1984/SUPERALLOYS_1984_105_114.
25 Li J R, Shi Z X, Yuan H L, et al. Journal of Materials Engineering, 2008(12), 6(in Chinese).
李嘉荣, 史振学, 袁海龙, 等. 材料工程, 2008(12), 6.
26 Zhang L F, Yan P, Zhao J C, et al. Journal of Iron and Steel Research, 2011, 23(12), 54(in Chinese).
张龙飞, 燕平, 赵京晨, 等. 钢铁研究学报, 2011, 23(12), 54.
27 Wang X G, Li J R, Yu J, et al. Acta Metallurgica Sinica, 2015, 51(10), 1253(in Chinese).
王效光, 李嘉荣, 喻健, 等. 金属学报, 2015, 51(10), 1253.
28 Yang W P, Li J R, Liu S Z, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(3), 558.
29 Walter W M, Stephen D A. Metallurgical Transactions A, 1987, 18, 85.
30 Shi Z X, Liu S Z, Li J R, et al. Journal of Aeronautical Materials, 2019, 39(4), 78(in Chinese).
史振学, 刘世忠, 李嘉荣, 等. 航空材料学报, 2019, 39(4), 78.
31 Wu D, Tian L X, Ma C L, et al. Materials Reports B: Research Papers, 2016, 30(6), 76(in Chinese).
武丹, 田礼熙, 马朝利. 等. 材料导报:研究篇, 2016, 30(6), 76.
32 Li D, Song J R, Zeng M, et al. Hot Working Technology, 2018, 47(2), 41(in Chinese).
李丹, 宋珏蓉, 曾明, 等. 热加工工艺, 2018, 47(2), 41.
33 Han J. International Journal of Rotating Machinery, 2004, 10(6), 443.
34 Li Y F. Anisotropic creep properties of a 3rd generation nickel-base single crystal superalloy. Ph. D. Thesis, University of Science and Technology of China, China, 2019(in Chinese).
李一飞. 一种第三代镍基单晶高温合金蠕变各向异性的研究. 博士学位论文, 中国科学技术大学, 2019.
35 Han G M, Yu J J, Sun X F. Rare Metal Materials and Engineering, 2011(4), 673(in Chinese).
韩国明, 于金江, 孙晓峰. 稀有金属材料与工程, 2011(4), 673.
36 Sass V, Glatzel U, Feller-Kniepmeier M. Acta Materialia, 1996, 44, 1967.
37 Li Y F, Wang L, Zhang G, et al. Materials Science & Engineering A, 2019, 760, 26.
38 Knowles D M, Chen Q Z. Materials Science and Engineering A, 2003, 340(1-2), 88.
39 Chen Q Z, Knowles D M. Materials Science and Engineering A, 2003, 356(1-2), 352.
40 Feller-Kniepmeier M, Kuttner T. Acta Materialia, 1994, 42(9), 3167.
41 Han G M, Yu J J, Sun Y L, et al. Materials Science and Engineering A, 2010, 527(21-22), 5383.
42 Rae C M F, Matan N, Reed R C. Materials Science and Engineering A, 2001, 300(1-2), 125.
43 Mackay R A, Maier R D. Metallurgical Transaction A, 1982, 13, 1747.
44 Leverant G R, Kear B H. Metallurgical Transactions, 1970, 1, 491.
45 Leverant G R, Kear B H, Oblak J M. Metallurgical Transaction, 1973, 4, 355.
46 Rae C M F, Matan N, Cox D C, et al. Metallurgical & Materials Transa-ctions A, 2000, 31(9), 2219.
47 Wang K G, Li J R, Liu S Z, et al. Journal of Materials Engineering, 2004(5), 7(in Chinese).
王开国, 李嘉荣, 刘世忠, 等. 材料工程, 2004(5), 7.
48 Yang S. Effects of Ru on microstructure and propertys of a 4th generation nickel-base single crystal super- alloys. Master's Thesis, Shenyang Aerospace University, China, 2013(in Chinese).
杨帅. Ru对一种第四代镍基单晶高温合金组织和性能的影响. 硕士学位论文, 沈阳航空航天大学, 2013.
49 Teng C Y, Gauvin R. Talanta, 2021, 235(1), 122765.
50 Feller-Kniepmeier M, Kuttner T. Acta Metallurgica et Materialia, 1994, 42, 3167.
51 Gunturi S S K, Maclachlan D W, Knowles D M. Materials Science and Engineering, A, 2000, 289(1), 289.
52 Hopgood A A, Martin J W. Materials Science and Engineering A, 1986, 82, 27.
53 Zhang Z K, Wang B Z, Liu D S, et al. Journal of Material Science & Engineering, 2012(6), 375(in Chinese).
张中奎, 王佰智, 刘大顺, 等. 材料科学与工程学报, 2012(6), 375.
54 Wen Z X, Zhang D X, Li S W, et al. Journal of Alloys and Compounds, 2017, 692, 301.
55 Shi Z X, Liu S Z, Zhao J Q, et al. Journal of Iron and Steel Research, 2021, 33(2), 168(in Chinese).
史振学, 刘世忠, 赵金乾, 等. 钢铁研究学报, 2021, 33(2), 168.
56 Han G M, Yu J J, Sun Y L, et al. Materials Science And Engineering, 2010, 527(21-22), 5383.
57 Jacome L A, Nortershauser P, Heyer J K, et al. Acta Materialia, 2013, 611(8), 2926.
58 Tian S G, Zhang S, Li C X, et al. Metallurgical & Materials Transactions A, 2012, 43(10), 2926.
59 Su Y, Tian S G, Yu H C, et al. Scripta Materialia, 2014, 93(15), 24.
60 Jacome L A, Nortershauser P, Somsen C, et al. Acta Materialia, 2014, 69, 246.
61 Matan N, Cox D C, Carter P. Acta Materialia, 1999, 47, 1549.
62 Sass V, Schneider W, Mughrabi H. Scripta Metallurgica Materialia, 1994, 31(7), 885.
63 Zhang H M, Xu S, Li Q, et al. Journal of Plasticity Engineering, 2020, 27(5), 12(in Chinese).
章海明, 徐帅, 李倩, 等. 塑性工程学报, 2020, 27(5), 12.
64 Kassner M E, Hayes T A. International Journal of Plasticity, 2003, 19(10), 1715.
65 Schacht T, Untermann N, Steck E. International Journal of Plasticity, 2003, 19(10), 1605.
66 Sun Z, Zhan L H, Liu J, et al. Journal of Plasticity Engineering, 2018, 25(5), 284(in Chinese).
孙找, 湛利华, 刘健, 等. 塑性工程学报, 2018, 25(5), 284.
67 Liu L R, Jin T, Zhao N R, et al. Acta Metallurgica Sinica, 2004, 40(8), 858(in Chinese).
刘丽荣, 金涛, 赵乃仁, 等. 金属学报, 2004, 40(8), 858.
68 Klingelhöffer H, Epishin A, Link T, et al. Materialprufung, 2008, 51(5), 291.
69 Chen J P, Ding Z P, Yin Z Y, et al. Materials for Mechanical Enginee-ring, 2006(4), 9(in Chinese).
陈吉平, 丁智平, 尹泽勇, 等. 机械工程材料, 2006(4), 9.
70 Zhang Y Y, Shi H J, Ma X F. In: The 18th Annual Academic Confe-rence of Beijing Mechanics Society. Beijing, China, 2012, pp. 324(in Chinese).
张洋洋, 施惠基, 马显锋. 北京力学会第18届学术年会. 北京, 2012, pp. 324.
71 Yue Z F, Tao X D, Yin Z Y, et al. Applied Mathematics and Mechanics, 2000(4), 373(in Chinese).
岳珠峰, 陶仙德, 尹泽勇, 等. 应用数学和力学, 2000(4), 373.
72 Liu L. Investigation on low cycle fatigue behavior of a Ni-base single crystal superalloy. Master's Thesis, Northeastern University, China, 2016(in Chinese).
刘柳. 一种镍基单晶高温合金低周疲劳行为的研究. 硕士学位论文, 东北大学, 2016.
73 Liu L, Meng J, Liu J L, et al. Materials & Design, 2017, 131, 441.
74 Yu J J, Sun Y L, Sun X F, et al. Materials Science & Engineering A, 2013, 566(3), 90.
75 Shi Z X, Liu S Z, Zhao J Q, et al. Aeronautical Manufacturing Technology, 2021, 64(1-2), 51(in Chinese).
史振学, 刘世忠, 赵金乾, 等. 航空制造技术, 2021, 64(1-2), 51.
76 Liu Y, Yu J J, Xu Y, et al. Materials Science and Engineering A, 2007, 454-455, 357.
77 Shui L, Xu Y C, Hu Z Q. Rare Metal Materials and Engineering, 2018, 47(4), 1054.
78 Han G M, Zhang Z X, Li J G, et al. Acta Metallurgica Sinica, 2012, 48(2), 170(in Chinese).
韩国明, 张振兴, 李金国, 等. 金属学报, 2012, 48(2), 170.
79 Liu C K, Yang S, He Y H, et al. Failure Analysis and Prevention, 2010, 5(4), 225(in Chinese).
刘昌奎, 杨胜, 何玉怀, 等. 失效分析与预防, 2010, 5(4), 225.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[9] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[10] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[11] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[12] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[13] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[14] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[15] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed