Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21040192-5    https://doi.org/10.11896/cldb.21040192
  金属与金属基复合材料 |
Ni-xCr-ySc(x=5,15,25,35;y=0,1)合金的高温抗氧化性能
解传滨, 吴皓然, 王慧聪, 刘景叶, 张修海*
广西大学广西有色金属及特色材料加工重点实验室,南宁 530004
High Temperature Oxidation Resistance of Ni-xCr-ySc(x=5,15,25,35;y=0,1) Alloy
XIE Chuanbin, WU Haoran, WANG Huicong, LIU Jingye, ZHANG Xiuhai*
Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials,Guangxi University,Nanning 530004,China
下载:  全 文 ( PDF ) ( 11258KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用粉末冶金技术制备Ni-Cr-Sc合金,研究了1 000 ℃高温条件下Sc元素对不同Cr含量高温合金抗氧化性能的影响。结果表明: 对于Ni-xCr-ySc(x=5,15,25,35;y=0,1;均为质量分数,下同)试验合金,Sc元素可增加氧化膜/基体界面面积并且氧化膜深入基体内部,可提高氧化层与基体的结合力。Sc元素促进Cr2O3、NiCr2O4的形成,为氧化膜提供形核质点,细化晶粒,提高塑性,有利于形成完整的氧化膜。稀土元素Sc有利于NiCr2O4的形成,降低氧化速率,同时细化晶粒,增加晶界和扩散通道,加快氧化速率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
解传滨
吴皓然
王慧聪
刘景叶
张修海
关键词:  高温合金  Sc  氧化性能  粉末冶金    
Abstract: The Ni-Cr-Sc alloys were prepared by powder metallurgy technology and the effects of Sc for the alloys with different content Cr on the oxidation resistance were studied at 1 000 ℃. The results show that: for Ni-xCr-ySc(x=5,15,25,35;y=0,1;mass fraction,the same below) alloys, the addition of Sc element increases the area of oxide scales/substrate,and the oxide scales penetrates deep into the substrate,the both improves the bonding force between the oxide scales and the substrate.The Sc element can promote the formation of Cr2O3 and NiCr2O4,provide the nucleation particles of oxide scales which refine the grains ,and protect the integrity of the oxide scales.The element of Sc is beneficial to the formation of NiCr2O4 which reduce the oxidation rate,meanwhile the element of Sc increase the grain boundaries as diffusion channels which accelerate the oxidation rate.
Key words:  superalloy    Sc    oxidation performance    powder metallurgy
发布日期:  2022-12-09
ZTFLH:  TG172.82  
基金资助: 广西科技重大专项(AA18118030);广西高等学校高水平创新团队项目(GXYSOF1813)
通讯作者:  *20090014@gx.edu.cn   
作者简介:  解传滨,2018年6月于山东科技大学获得工学学士学位。现为广西大学资源环境与材料学院硕士研究生,在张修海教授的指导下进行研究。目前主要研究领域为高温合金。
张修海,广西大学资源环境与材料学院副教授,硕士研究生导师。2002年河南科技大学铸造专业本科毕业,2005年广西大学材料加工硕士毕业,2009年华中科技大学材料学专业博士毕业,2013年清华大学博士后毕业。目前主要从事镍基高温合金研究,发表论文20余篇。
引用本文:    
解传滨, 吴皓然, 王慧聪, 刘景叶, 张修海. Ni-xCr-ySc(x=5,15,25,35;y=0,1)合金的高温抗氧化性能[J]. 材料导报, 2022, 36(23): 21040192-5.
XIE Chuanbin, WU Haoran, WANG Huicong, LIU Jingye, ZHANG Xiuhai. High Temperature Oxidation Resistance of Ni-xCr-ySc(x=5,15,25,35;y=0,1) Alloy. Materials Reports, 2022, 36(23): 21040192-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040192  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21040192
1 Poger C R. The superalloys fundamantals and applications, China Machine Press, China, 2016, pp.3(in Chinese).
Poger C R. 高温合金基础与应用, 机械工业出版社, 2016, pp.3.
2 Neil B, Gerald H M, Frederick S P. Introduction to the high-temperature oxidation of metals, Higher Education Press, China, 2010, pp.1(in Chinese).
Neil B, Gerald H M, Frederick S P. 金属高温氧化导论, 高等教育出版社, 2010, pp.1.
3 Guo J T. Acta Metallurgica Sinica, 2002, 38(11), 1163(in Chinese).
郭建亭. 金属学报, 2002, 38(11), 1163.
4 Wu D L, Jiang S M, Fan Q X, et al. Acta Metallurgica Sinica, 2014, 50(10), 1170(in Chinese).
吴多利, 姜肃猛, 范其香, 等. 金属学报, 2014, 50(10), 1170.
5 Yan H J, Liu Z B, Wang E P, et al. Materials for Mechanical Enginee-ring, 2019, 43(5), 49(in Chinese).
闫海居, 刘质彬, 王二鹏, 等. 机械工程材料, 2019, 43(5), 49.
6 Li X L. The effects of yttrium on microstructure and high-temperature corrosion resistance of GH3535 superalloy. Ph.D. Thesis, University of China Academy of Science, China, 2015 (in Chinese).
李晓丽. 稀土Y对GH3535高温合金微观结构和抗高温腐蚀性能的影响. 博士学位论文, 中国科学院大学, 2015.
7 Li G Y, Liu W J, You C, et al. Guangdong Chemical Industry, 2013(14), 115(in Chinese).
李关云, 刘文军, 游超, 等. 广东化工, 2013(14), 115.
8 Liu S B, Li W, Sun J, et al. Corrosion Science, 2020, 171, 1.
9 Barrett C A. Oxidation of Metals, 1988, 30(5), 361.
10 Yang Z, Lu J T, Zhao J B. Journal of the Chinese Society of Rare Earths, 2014, 32(6), 641(in Chinese).
杨珍, 鲁金涛, 赵新宝. 中国稀土学报, 2014, 32(6), 641.
11 Liang T. Journal of Jilin Institute of Chemical Technology, 2014, 31(11), 94(in Chinese).
梁婷. 吉林化工学院学报, 2014, 31(11), 94.
12 Yang S W, Zhang Z M, Pan J Q, et al. Transactions of Materials and Heat Treatment, 2007, 36(20), 59(in Chinese).
杨世伟, 张志明, 潘健全, 等. 材料热处理学报, 2007, 36(20), 59.
13 Sun C Y, Chen G C, Wu C B. Corrosion Science and Protection Technology, 2014, 26(4), 345(in Chinese).
孙朝阳, 陈桂才, 武传标. 腐蚀科学与防护技术, 2014, 26(4), 345.
14 Shi Z X, Yan X F, Duan C H. The Chinese Journal of Nonferrous Metals, 2019, 29(12), 2729(in Chinese).
石照夏, 颜晓峰, 段春华. 中国有色金属学报, 2019, 29(12), 2729.
15 Zhao Y, Yang G X, Yuan C. Corrosion Science and Protection Technology, 2007, 19(1), 1(in Chinese).
赵越, 杨功显, 袁超. 腐蚀科学与防护技术, 2007, 19(1), 1.
16 Guo H B, Wang D, Peng H, et al. Corrosion Science, 2014, 78, 369.
17 John P H, Bernard P, Robert A R. Acta Metallurgica et Materialia, 1995, 43(3), 1065.
[1] 李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
[2] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[3] 张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
[4] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[5] 谭义凤, 张婷, 张云飞, 孙琦, 田蒙奎. Cum-Fen/Ti1-xSnxO2复合催化剂的脱硝性能及抗硫活性[J]. 材料导报, 2022, 36(4): 20100096-6.
[6] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[7] 刘虎, 齐哲, 艾莹珺, 周怡然, 杨金华, 赵文青, 赵春玲, 郎旭东, 贺宜红, 焦健. SiC涂层对熔渗SiCf/SiC复合材料高温服役性能的影响[J]. 材料导报, 2022, 36(21): 21070221-5.
[8] 颉芳霞, 杨豪, 黄家兵, 何雪明, 俞经虎. 粉末冶金Ti-xNb-5Sn骨科合金的摩擦学行为[J]. 材料导报, 2022, 36(21): 21050088-5.
[9] 郭岩岩, 历长云, 冀国良, 许磊, 王亚松, 米国发. 粉末致密化过程数值模拟研究现状[J]. 材料导报, 2022, 36(18): 20080161-7.
[10] 杨海屹, 张莎莎, 姚正军, 刘子利. 电子束重熔对铁基粉末冶金表面耐磨性能的影响[J]. 材料导报, 2022, 36(17): 20100136-5.
[11] 陆强, 吴亚昌, 徐明新, 曲艳超, 王涵啸, 裴鑫琦, 欧阳昊东. 抗高温失活SCR脱硝催化剂研究进展[J]. 材料导报, 2022, 36(13): 20090242-9.
[12] 王蕊, 王林山, 石韬, 周超, 汪礼敏. 谐波减速器用粉末冶金刚轮材料的摩擦磨损性能研究[J]. 材料导报, 2022, 36(13): 20120260-7.
[13] 李京菁, 侯赤. 机织复合材料渐进损伤的可视化方法[J]. 材料导报, 2022, 36(13): 20110130-9.
[14] 刘佳宾, 刘新灵, 李振. 粉末高温合金夹杂物引起疲劳裂纹萌生微观机理研究现状[J]. 材料导报, 2021, 35(z2): 385-390.
[15] 唐紫苑, 张淑婷, 杜开平, 宣鹏举, 司丽娜. 包埋渗技术在镍基高温合金中的应用[J]. 材料导报, 2021, 35(Z1): 389-394.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed