Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 20090242-9    https://doi.org/10.11896/cldb.20090242
  无机非金属及其复合材料 |
抗高温失活SCR脱硝催化剂研究进展
陆强1, 吴亚昌1, 徐明新1,*, 曲艳超2, 王涵啸1, 裴鑫琦1, 欧阳昊东1
1 华北电力大学生物质发电成套设备国家工程实验室,北京 102206
2 北京华电光大环境股份有限公司,北京 102206
Progress in the Development of SCR Denitration Catalysts with Resistance of High-temperature Deactivation
LU Qiang1, WU Yachang1, XU Mingxin1,*, QU Yanchao2, WANG Hanxiao1, PEI Xinqi1, OUYANG Haodong1
1 National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, China
2 Beijing National Power Group Co., Ltd., Beijing 102206, China
下载:  全 文 ( PDF ) ( 2703KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 V2O5-WO3(MoO3)/TiO2催化剂是目前广泛应用的商用选择性催化还原(SCR)脱硝催化剂。商用选择性催化还原(SCR)脱硝催化剂。然而,在实际工业应用过程,特别是垃圾焚烧锅炉、燃油及燃气轮机等设备的烟气脱硝中,常规钒钨(钼)钛系脱硝催化剂存在各种失活问题,高温烧结是其中重要的原因之一。本文首先介绍了钒钨(钼)钛系脱硝催化剂高温失活的三种主要机理,包括高温下载体TiO2晶格转变、还原剂NH3选择性催化氧化以及水蒸气-NH3竞争性吸附。然后,系统分析了目前提高SCR脱硝催化剂耐高温性能的主要技术手段,包括提高催化剂载体热稳定性及抑制还原剂NH3被氧化等,其中Ti-Zr、Ti-Si及分子筛是优选的热稳定型催化剂载体,金属氧化物(如Fe2O3、WO3)是主要的具有抑制NH3催化氧化能力的活性组分。此外,本文还对高温催化剂的抗水改性技术手段进行了简要叙述,包括增加抗水助剂和采用疏水型载体,其中可选的抗水助剂包括贵金属(如Pt、Pd等)以及金属氧化物(如WO3、CeO2等)等,其主要目的是提高催化剂表面吸附活化反应组分的能力,而采用疏水型载体(如抗水型分子筛、具有抗水保护层包覆的金属氧化物)则可抑制水蒸气竞争吸附,提高催化剂的耐水性能。最后,基于现有研究进展的分析和总结,本文对未来抗高温失活SCR脱硝催化剂的发展趋势做出了展望,相关结论可对后续SCR脱硝催化剂抗高温失活改性的研究提供重要支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陆强
吴亚昌
徐明新
曲艳超
王涵啸
裴鑫琦
欧阳昊东
关键词:  催化剂  选择性催化还原(SCR)  失活  高温  NOx控制    
Abstract: The V2O5-WO3(MoO3)/TiO2 catalysts are widely utilized in the commercial fields of selective catalytic reduction (SCR) denitration. However, many factors can result in the deactivation of the catalysts in the process of SCR denitration operation, especially in the industrial processes of waste incinerators and oil/gas turbines, among which the thermal deactivation in high-temperature flue gas is important. This review summarizes the deactivation mechanisms of the SCR catalysts at high temperatures, including the crystalline transformation of TiO2 support, the catalytic oxidation of NH3 by V2O5, and the competitive adsorption between water vapor and NH3. Then, the developments of SCR denitration catalysts with the resistance of high-temperature deactivation are presented, i.e., improving the thermal stability of support and inhibiting the catalytic oxidation of gaseous NH3. Ti-based composite supports, including Ti-Zr/Ti-Si supports and zeolites, are considered to be optimal for improving the thermal stability of support, while metal oxides, such as Fe2O3 and WO3, are the main active components to prevent the NH3 catalytic oxidation. In addition,the technologies for the thermal resistance improvement of SCR denitration catalysts are briefly discussed, including the addition of anti-water components and the application of hydrophobic supports. With the presence of anti-water components such as noble metals (Pt, Pd) and metal oxides (WO3, CeO2), the adsorption of gaseous reactants over the catalyst can be promoted. Besides, using the hydrophobic carriers, such as zeolites and carriers coated with water-resistant layers, can also suppress the adsorption of water vapor. Finally, the developing prospects of SCR denitration catalysts with superior resistance to high temperature are discussed. This review can provide some fundamental instructions for the improvement of SCR denitration catalysts with the resistance of thermal deactivation in the high-temperature flue gas.
Key words:  catalysts    selective catalytic reduction (SCR)    deactivation    high temperature    NOx emissions
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  X51  
基金资助: 国家自然科学基金(51806220;51922040);中国博士后科学基金(2019M660594);中央高校基本业务费资助项目(2019QN003;2020DF01)
通讯作者:  * mingxin.xu@ncepu.edu.cn   
作者简介:  陆强,现任华北电力大学新能源学院副院长,教授,博士研究生导师,生物质发电成套设备国家工程实验室主任。2001—2010年在中国科学技术大学完成了本硕博的学习,获得工学博士学位。主持各类项目40余项,授权发明专利30余项,发表SCI论文100余篇,主编专著三部。主要研究方向为多源有机固废热转化及烟气污染物控制。
徐明新,华北电力大学新能源学院讲师,2012年6月本科毕业于山东大学能源与动力工程学院,2017年7月在中国科学院大学取得工学博士学位,2019—2020年在华北电力大学进行博士后研究工作,后出站留校工作。主持各类项目5项,发表SCI论文20余篇,主要研究方向为固体燃料热转化及烟气污染物控制。
引用本文:    
陆强, 吴亚昌, 徐明新, 曲艳超, 王涵啸, 裴鑫琦, 欧阳昊东. 抗高温失活SCR脱硝催化剂研究进展[J]. 材料导报, 2022, 36(13): 20090242-9.
LU Qiang, WU Yachang, XU Mingxin, QU Yanchao, WANG Hanxiao, PEI Xinqi, OUYANG Haodong. Progress in the Development of SCR Denitration Catalysts with Resistance of High-temperature Deactivation. Materials Reports, 2022, 36(13): 20090242-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090242  或          http://www.mater-rep.com/CN/Y2022/V36/I13/20090242
1 The National Bureau of Statistics of People's Republic of China. China statistical yearbook on environment 2018, China Academic Journal Electronic Publishing House, China, 2019 (in Chinese).
中华人民共和国国家统计局. 中国环境统计年鉴2018, 中国统计出版社, 2019.
2 Zhao W, Sun S H, Liu L Y, et al. Electric Power Technology and Environmental Protection, 2015, 31(1), 25(in Chinese).
赵伟, 孙少华, 刘路遥, 等. 电力科技与环保, 2015, 31(1), 25.
3 Dong Y W, Li J, Liang W J, et al. Industrial Catalysis, 2017, 25(9), 48(in Chinese).
董逸雯, 李坚, 梁文俊, 等. 工业催化, 2017, 25(9), 48.
4 Zhang S L, Zhong Q. Journal of Molecular Catalysis A: Chemical, 2013, 373, 108.
5 Zhang X, Wu J S, Wei D, et al. Science & Technology Review, 2012, 30(33), 35(in Chinese).
张新, 吴俊升, 魏丹, 等. 科技导报, 2012, 30(33), 35.
6 Iswarya V, Bhuvaneshwari M, Chandrasekaran N, et al. Aquatic Toxico-logy, 2018, 197, 89.
7 Zheng Y, Jensen A D,Johnsson J E. Applied Catalysis B: Environmental, 2005, 60(3-4), 253.
8 Nam I, Eldridge J W, Kittrell J R, et al. Industrial & Engineering Che-mistry Product Research and Development, 1986, 25(2), 192.
9 Yu Y K, He C, Chen J S, et al. Journal of Fuel Chemistry & Technology, 2012, 40(11), 1359.
10 Ramis G, Busca G, Bregani F, et al. Applied Catalysis, 1990, 64(1-2), 259.
11 Ramis G, Yi L, Busca G. Catalysis Today, 1996, 28(4), 373.
12 Topsoe N, Topsoe H, Dumesic J. Journal of Catalysis, 1995, 151(1), 226.
13 Topsoe N, Dumesic J, Topsoe H. Journal of Catalysis, 1995, 151(1), 241.
14 Lee S M, Hong S C. Applied Catalysis B: Environmental, 2015, 163, 30.
15 Li H B, Weng J, Li X H, et al. Science and Technology Innovation Herald, 2015, 12(26), 20(in Chinese).
李红波, 翁骥, 李小海, 等. 科技创新导报, 2015, 12(26), 20.
16 Sun J X. Mechanism study and numerical simulation of hydrothermal aging of urea-SCR catalyst for diesel engine. Master's Thesis, Dalian University of Technology, China, 2019 (in Chinese).
孙家兴. 柴油机SCR催化剂水热老化的机理研究及数值模拟. 硕士学位论文, 大连理工大学, 2019.
17 Chapman D M. Applied Catalysis A: General, 2011, 392(1), 143.
18 Wang L. The characteristic reaction of WO3/TiO2-ZrO2 series high-temperature SCR DeNOx catalysts and its application. Master's Thesis, North China Electric Power University (Beijing), China, 2016 (in Chinese).
王磊. WO3/TiO2-ZrO2系列高温SCR脱硝催化剂脱硝特性与应用研究. 硕士学位论文, 华北电力大学(北京), 2016.
19 Xu B Q, Xu H D, Lin T, et al. Chinese Journal of Catalysis, 2016, 37(8), 1354.
20 Xu B Q, Xu H D, Cao Y, et al. Chinese Journal of Inorganic Chemistry, 2016, 32(3), 517(in Chinese).
徐宝强, 徐海迪, 曹毅, 等. 无机化学学报, 2016, 32(3), 517.
21 Wang I, Chang W F, Shiau R, et al. Journal of Catalysis, 1983, 83(2), 428.
22 Lu Q, Wang L, Lin Z W, et al. Journal of Chinese Society of Power Engineering, 2016, 36(11), 901(in Chinese).
陆强, 王磊, 蔺卓玮, 等. 动力工程学报, 2016, 36(11), 901.
23 Wang L F. Preparation of WO3-doped TiO2-ZrO2-based NH3-SCR catalysts and investigation on the mechanism of NOx reduction from flue gas and poisoning. Master's Thesis, Southeast University, China, 2016 (in Chinese).
王龙飞. WO3掺杂TiO2-ZrO2催化剂的制备及脱硝与中毒机理研究. 硕士学位论文, 东南大学, 2016.
24 Wang L F, Zhang Y P, Guo W Q, et al. Journal of Chemical Industry and Engineering, 2015, 66(10), 101(in Chinese).
王龙飞, 张亚平, 郭婉秋, 等. 化工学报, 2015, 66(10), 101.
25 Chen L, Li J, Ge M. Chemical Engineering Journal, 2011, 170(2-3), 531.
26 Jia B H, Guo J X, Shu S, et al. Molecular Catalysis, 2017, 443, 25.
27 Casanova M,Schermanz K, Llorca J, et al. Catalysis Today, 2012, 184(1), 227.
28 Kobayashi M, Kuma R, Masaki S, et al. Applied Catalysis B: Environmental, 2005, 60(3-4), 173.
29 Song C F, Lu M K, Yang P, et al. Thin Solid Films, 2002, 413(1), 155.
30 Zhong L C. Study on the performance of TiO2-based SCR catalysts with SiO2 addition. Master's Thesis, Shanghai Jiao Tong University, China, 2013 (in Chinese).
钟柳成. 添加SiO2对以TiO2为载体的SCR催化剂性能的影响. 硕士学位论文, 上海交通大学, 2013.
31 Liu Q, Jin Q J, Gui G R, et al. Chinese Journal of Environmental Engineering, 2017, 11(10), 5495(in Chinese).
刘青, 金奇杰, 眭国荣, 等. 环境工程学报, 2017, 11(10), 5495.
32 Zhao M M, Chen M Y, Zhang P J, et al. Journal of Molecular Catalysis, 2017, 31(3), 223(in Chinese).
赵梦梦, 陈梦寅, 张鹏举, 等. 分子催化, 2017, 31(3), 223.
33 Liu J S. Study on the design, synthesis, characterization and catalytic performance of Fe-based catalysts supported on Beta coated by oxide thin films for NH3-SCR reaction. Ph.D. Thesis, China University of Petroleum (Beijing), China, 2018 (in Chinese).
刘计省. 氧化物薄膜包覆的Fe基Beta分子筛核壳结构催化剂的设计,制备,表征及对NH3-SCR反应的研究. 博士学位论文, 中国石油大学(北京), 2018.
34 Salker A V, Weisweiler W. Applied Catalysis A: General, 2000, 203(2), 221.
35 Li L D, Zhang F X, Guan N J, et al. Catalysis Communications, 2007, 8(3), 583.
36 Sultana A, Nanba T, Sasaki M, et al. Catalysis Today, 2011, 164(1), 495.
37 Long R Q, Yang R T. Catalysis Letters, 2001, 74(3), 201.
38 Chen Z, Liu Q, Guo L, et al. Applied Catalysis B: Environmental, 2021, 286, 119816.
39 Wang D E, Wang L, Gao G L, et al. The Chinese Journal of Process Engineering, 2020, 20(6), 718(in Chinese).
王殿二, 王玲, 高国龙, 等. 过程工程学报, 2020, 20(6), 718.
40 Wang P, Yu D, Zhang L D, et al. Applied Catalysis A: General, 2020, 607, 117806.
41 Shi J, Zhang Y, Zhang Z H, et al. Catalysis Communications, 2018, 115, 59.
42 Grzybek J, Gil B, Roth W J, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 196, 281.
43 Liu F D, He H, Zhang C B, et al. Catalysis Today, 2011, 175(1), 18.
44 Long R Q, Yang R T. Journal of Catalysis, 2002, 207(2), 224.
45 Wang F, Yao G H, Gui K T. Proceedings of the Chinese Society for Electrical Engineering, 2009, 29(29), 49(in Chinese).
王芳, 姚桂焕, 归柯庭. 中国电机工程学报, 2009, 29(29), 49.
46 Shen L T. Experimental study of catalytic reduction of nitrous oxide over Fe-Mo/ZSM-5 catalyst. Master's Thesis, Taiyuan University of Technology, China, 2007 (in Chinese).
申林涛. Fe-Mo/ZSM-5催化剂上氮氧化物催化还原性能的实验研究. 硕士学位论文, 太原理工大学, 2007.
47 Guo L Y, Zhu L, Zhuang K, et al. Environmental Engineering, 2019, 37(5), 163(in Chinese).
郭丽颖, 朱林, 庄柯, 等. 环境工程, 2019, 37(5), 163.
48 Wang H M, Ning P, Zhang Y Q, et al. Journal of Hazardous Materials, 2020, 388, 121812.
49 Kobayashi M, Miyoshi K. Applied Catalysis B: Environmental, 2007, 72(3-4), 253.
50 Bian X, Hu L, Peng P, et al. Journal of Northeastern University(Natural Science), 2019, 40(12), 1716(in Chinese).
边雪, 胡吕, 彭朋, 等. 东北大学学报(自然科学版), 2019, 40(12), 1716.
51 Cao L, Wu X D, Xu Y F, et al. Catalysis Communications, 2018, 120, 55.
52 Peng Y, Li K Z, Li J H. Applied Catalysis B: Environmental, 2013, 140-141, 483.
53 Arce-Sarria A, Caicedo-Rosero C L, Lara-Ramos J A, et al. Data in Brief, 2019, 25, 104151.
54 Ren X N, Li Z G, Liu S X, et al. Industrial Catalysis, 2013, 21(11), 36(in Chinese).
任晓宁, 李振国, 刘双喜, 等. 工业催化, 2013, 21(11), 36.
55 Chen L, Li J H, Ge M F, et al. Catalysis Today, 2010, 153(3), 77.
56 Liu Z M, L H Y, Feng X, et al. Molecular Catalysis, 2018, 445, 179.
57 Jin R B, Liu Y, Wu Z B, et al. Catalysis Today, 2010, 153(3), 84.
58 Shu Y,Aikebaier T, Quan X, et al. Applied Catalysis B: Environmental, 2014, 150-151, 630.
59 Wang J Y, Zhu H Z, An Z W, et al. Journal of Chemical Industry and Engineering, 2019, 70(12), 4635(in Chinese).
王金玉, 朱怀志, 安泽文, 等. 化工学报, 2019, 70(12), 4635.
60 Grossale A, Nova I, Tronconi E. Catalysis Today, 2008, 136(1), 18.
61 Wang Y C. The influence of acid/rare earth elements (Ce, La)-modification on the hydrothermal stability of Cu-SAPO-34 for NH3-SCR. Master's Thesis, Kunming University of Science and Technology, China, 2016 (in Chinese).
王燕彩. 酸或稀土元素(Ce、La)改性对Cu-SAPO-34上NH3选择性催化还原NOx抗水热性能的影响. 硕士学位论文, 昆明理工大学, 2016.
62 Camposilvan E, Flamant Q, Anglada M. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 47, 95.
63 Ren Z Y, Fan H, Wang R. Catalysis Communications, 2017, 100, 71.
[1] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[2] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[3] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[4] 李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
[5] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[6] 卞灿星, 钱钰, 崔功军, 刘燕萍, 寇子明. 钇(Y)元素强化的CoCrNiFe基高温自润滑复合涂层的摩擦学性能[J]. 材料导报, 2022, 36(8): 21010202-8.
[7] 张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
[8] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[9] 龙伟民, 秦建, 路全彬, 刘大双, 吴爱萍. 旋耕刀感应钎涂层热处理工艺研究[J]. 材料导报, 2022, 36(7): 21090163-5.
[10] 朱咸勇, 丁振宇, 马国政, 朴钟宇, 付田力, 周雳, 于天阳, 郭伟玲, 王海斗. 三元MAX相层状陶瓷材料高温摩擦学性能研究进展[J]. 材料导报, 2022, 36(7): 21090166-11.
[11] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[12] 周维, 樊坤阳, 黄淙, 刘子京, 万维财, 贡太敏. 烧结温度对团聚高温快速烧结WC-10Co-4Cr粉末及其HVOF涂层性能的影响[J]. 材料导报, 2022, 36(6): 20120041-6.
[13] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[14] 徐欢, 于佳蕊, 曹中秋, 王艳, 张轲. 钴基催化剂催化NaBH4制氢研究进展[J]. 材料导报, 2022, 36(5): 20090051-11.
[15] 谭义凤, 张婷, 张云飞, 孙琦, 田蒙奎. Cum-Fen/Ti1-xSnxO2复合催化剂的脱硝性能及抗硫活性[J]. 材料导报, 2022, 36(4): 20100096-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed