Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 20090055-14    https://doi.org/10.11896/cldb.20090055
  无机非金属及其复合材料 |
具有类过氧化物酶活性的纳米材料在比色分析中的研究进展
陈达, 刘美含, 张伟, 练美玲*
中国民航大学民航热灾害防控与应急重点实验室,天津 300300
Progress in Colorimetric Analysis of Nanomaterials with Peroxidase-like Activity
CHEN Da, LIU Meihan, ZHANG Wei, LIAN Meiling*
Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300,China
下载:  全 文 ( PDF ) ( 7162KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米酶的出现是人工模拟酶研究领域的重大进展,突破了以往人工模拟酶催化效率不高的局限性,目前已被广泛应用到疾病诊断和治疗、环境监测及污水处理等多个领域。近年来,人们发现了多种纳米材料具有天然酶活性,并将具有类过氧化物酶活性的纳米材料应用于制备比色生物传感器。借助纳米材料自身所具有的催化能力,模拟类过氧化物酶活性,发挥其成本低、稳定性高和易于储存等优势,直接实现对生化反应的催化,进而通过裸眼观察或以分光光度计检测溶液吸光度变化对目标物进行快速、灵敏的定性定量分析。
具有类过氧化物酶活性的纳米材料在比色传感器中的应用为新型纳米比色传感器的发展提供了更广阔的空间。但是随着研究的不断深入,该类纳米材料也暴露出一些需要改进的问题,如对pH值要求较多、亲和力不够强、催化活性不够高等。针对上述问题,大多的研究都集中于材料的改进和优化。现有的研究表明,可以通过改变材料的结构、增加表面修饰、多种纳米材料复合等方法来进行性能的改进和提升。本文首先明确了比色传感器的显色机制,接着从六种纳米材料(贵金属纳米材料、金属氧化物纳米材料、金属硫化物纳米材料、碳基纳米材料、金属有机骨架、MXene纳米材料)出发详细综述其类过氧化物纳米酶的研究及应用进展,最后概述和讨论了类过氧化物纳米酶当前面临的挑战,明确了纳米材料在比色分析中的地位和未来的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈达
刘美含
张伟
练美玲
关键词:  纳米酶  类过氧化物酶活性  比色检测  生物传感器    
Abstract: The emergence of nanozymes is a major advancement in the research field of artificial enzymes, breaking through the limitations of previous artificial enzymes with low catalytic efficiency. It has been widely used in many fields, such as disease diagnosis and treatment, environmental monitoring and sewage treatment. In recent years, a variety of nanomaterials with natural enzymatic activity have been discovered, and nanomaterials with peroxidase-like activity have been used to prepare colorimetric biosensors. With the help of the catalytic ability of nanomaterials, the simulation of peroxidase-like activity can be achieved. Taking advantage of its advantages of low cost, high stability and easy storage, the catalysis of biochemical reactions can be directly realized. Therefore, the rapid and sensitive qualitative and quantitative analysis of the target can be achieved by naked eye observation or with a spectrophotometer.
The application of nanomaterials with peroxidase-like activity in colorimetric sensors provides a broader space for the development of new nano-colorimetric sensors. However, as the research expanded,this type of nanomaterials also exposed some problems that needed to be improved, such as specific pH requirements, insufficient affinity and insufficient catalytic activity. In view of these problems, most researchers have focused on the improvement and optimization of materials. Existing research shows that the performance can be improved and enhanced by changing the structure of the material, increasing the surface modification and using composites of various nanomaterials. This review clarifies the color-rendering mechanism of the colorimetric sensor. Then, the research progress and application of peroxidase-like nanozymes are reviewed in detail from the perspective of six types of nanomaterial (precious metal nanomaterials, metal oxide nanomaterials, metal sulfide nanomaterials, carbon-based nanomaterials, metal organic frameworks and MXene nanomaterials). Finally, the current challenges faced in the application of peroxidase-like nanozymes are summarized and discussed, and the status and future development prospects of nanomaterials in colorimetric analysis are elucidated.
Key words:  nanozymes    peroxidase-like activity    colorimetric detection    biosensor
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  O65  
基金资助: 中国民航大学科研启动基金项目(2020KYQD07);国家重点研发计划(2018YFF01011700);国家自然科学基金(21973111;61801519)
通讯作者:  * mllian@cauc.edu.cn   
作者简介:  陈达,中国民航大学蓝天学者特聘教授、博士研究生导师,国家重点研发计划首席专家,公安部反恐处突领域专家,雀巢全球研发中心乳品质量安全体系首席研究员。主要从事公共安全智能传感与装备等领域的研究开发工作。近年来,主持国家重点研发计划1项、国家重大科学仪器专项课题任务1项、国家自然科学基金3项、军工涉密项目1项、省部级科研项目4项、重大横向合作项目4项;获国家科技进步二等奖1项,国际学术奖励2项;发表SCI论文64篇;授权发明专利11项、软件著作权13项。
练美玲,中国民航大学讲师,研究方向为功能纳米材料制备及其在传感、生物催化、医药等领域的应用。主持国家自然科学基金青年项目一项,参加多项国家自然科学基金面上项目的研究,参加过 973、863 等国家重大课题的研究工作。近年来在包括Chem.、Anal. Chem.、ACS Appl. Mater. Inter.、Sensor. Actuator. B: Chem.、ACS Appl. Bio Mater. 等国际期刊上发表 SCI 收录论文多篇,申报多项国家发明专利。
引用本文:    
陈达, 刘美含, 张伟, 练美玲. 具有类过氧化物酶活性的纳米材料在比色分析中的研究进展[J]. 材料导报, 2022, 36(13): 20090055-14.
CHEN Da, LIU Meihan, ZHANG Wei, LIAN Meiling. Progress in Colorimetric Analysis of Nanomaterials with Peroxidase-like Activity. Materials Reports, 2022, 36(13): 20090055-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090055  或          http://www.mater-rep.com/CN/Y2022/V36/I13/20090055
1 Ou Y Y, Hu X J. Electric Engineering, 2006(11), 1(in Chinese).
欧廷印, 胡筱婧. 电工技术, 2006(11), 1.
2 Su S, Li J, Wang L H. Journal of Nanjing University of Posts and Telecommunications, 2018, 38(3), 98(in Chinese).
苏邵, 李晶, 汪联辉. 南京邮电大学学报, 2018, 38(3), 98.
3 Xu X Y, Zheng L, Hu L. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(1), 45(in Chinese).
徐祥云, 郑丽, 胡榴. 中国无机分析化学, 2020, 10(1), 45.
4 Tang L H, Li J H. ACS Sensors, 2017, 2 (11), 857.
5 Paterson S, de la Rica R. Analyst, 2015, 140 (10), 3308.
6 Zheng W S, Jiang X Y. Analyst, 2016, 141(4), 1196.
7 Yang X H, Ling J, Peng J, et al. Analytica Chimica Acta, 2013, 798, 74.
8 Liu J B, Hu X N, Hou S, et al. Sensors and Actuators B: Chemical, 2012, 166, 708.
9 Liu X G, Huang D L, Lai C, et al. Small, 2019, 15, 1900133.
10 He Y L, Li N, Li W K, et al. Sensors and Actuators B: Chemical, 2020, 326, 128850.
11 Zhao X, Yao X X, Xu C, et al. Microchimica Acta, 2020, 187(10), 587.
12 Huang Y Y, Lin Y H, Pu F, et al. Progress in Biochemistry and Biophy-sics, 2018, 45(2), 256(in Chinese).
黄燕燕, 林友辉, 蒲芳, 等.生物化学与生物物理进展, 2018, 45(2), 256.
13 Li B X, Cao R, Jv Y. Chemical Communications, 2010, 46, 8017.
14 Li R M, Zhou Y, Zou L,et al. Sensors and Actuators B: Chemical, 2017, 245, 656.
15 Feng J, Huang P, Shi S, et al. Analytica Chimica Acta, 2017, 967, 64.
16 Hu L Z, Liao H, Feng L Y,et al. Analytical Chemistry, 2018, 90(10), 6247.
17 Wang X X, Wu Q, Shan Z,et al. Biosensors and Bioelectronics, 2011, 26(8), 3614.
18 Ye S J, Andy P B, Ashley C S,et al. Advanced Science, 2019, 6, 21.
19 Ma M, Zhang Y, Gu N. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 373, 6.
20 Jin L H, Meng Z, Zhang Y Q, et al. ACS Applied Materials & Interfaces, 2017, 9(11), 10027.
21 He H B, Chen R T, Wu Y Y, et al. Microchimica Acta, 2019, 186(12), 778.
22 Li X L, Yang X Y, Cheng X W, et al. Journal of Colloid and Interface Science, 2020, 570, 300.
23 Cui Y S, Lai X, Liang B, et al. ACS Omega, 2020, 5(12), 6800.
24 Pramod K G, Seong E S, Gi H S. Materials ence and Engineering: C, 2020, 116, 111231.
25 Chen H T, Yuan C Y, Yang X Y, et al. ACS Applied Nano Materials, 2020, 3(5), 4586.
26 Sun Y, Wang R X, Liu X, et al. Microchimica Acta, 2018, 185(9), 445.
27 Jiang X L, Fan X B, Xu W, et al. ACS Biomaterials Science & Enginee-ring, 2020, 6(1), 680.
28 Ding Y N, Yang B C, Liu H, et al. Sensors and Actuators B: Chemical, 2018, 259, 775.
29 Cai S F, Xiao W, Duan H H, et al. Nano Research, 2018, 11(12), 6304.
30 Tatiana G C, Vasiliki A G, George Z T, et al. Microchimica Acta, 2018, 185(1), 22.
31 Rastogi L, Karunasagar D, Sashidhar R B, et al. Sensors & Actuators B Chemical, 2017, 248, 124.
32 Gao L Z, Zhuang J, Nie L, et al. Nature Nanotechnology, 2007, 2(9), 577.
33 Wei H, Wang E K. Analytical chemistry, 2008, 80, 2250.
34 Lu N, Zhang M, Ding L, et al. Nanoscale, 2017, 9, 4508.
35 Jiang Y Z, Song N, Wang C, et al. Journal of Materials Chemistry B, 2017, 5, 5499.
36 Li X N, Li J H, Shi W L, et al. Materials Reports A:Review Papers, 2020, 34(7), 13017(in Chinese).
李晓楠, 李景华, 时炜璐, 等.材料导报:综述篇, 2020, 34(7), 13017.
37 Jiao X, Song H J, Zhao H H, et al. Analytical Methods, 2012,4, 3261.
38 Cheng X W, Huang L, Yang X Y, et al. Journal of Colloid and Interface Science, 2019, 535, 425.
39 Lian J J, Liu P, Jin C Q, et al. Microchimica Acta, 2019, 186(6), 1.
40 Wang C, Duan J Z, Shi W J, et al. Microchimica Acta, 2018, 185 (9), 1.
41 Liu X L, Wang X H, Qi C, et al. Applied Surface Science, 2019, 479, 532.
42 Li Z H, Yang X D, Yang Y B, et al. Chemistry-A European Journal, 2017, 24, 409.
43 Bhagat S, Srikanth V N V, Shutthanandan V, et al. Journal of Colloid and Interface Science, 2018, 513, 831.
44 Mu J S, Wang Y, Zhao M, et al. Chemical Communications, 2012, 48, 2540.
45 Gao Y, Wu K L, Li H Y, et al. Sensors and Actuators B: Chemical, 2018, 273, 1635.
46 Zhao J, Dong W F, Zhang X D, et al. Sensors and Actuators B: Chemical, 2018, 263, 575.
47 Ding Y N, Chen M M, Wu K L, et al. Materials Science and Enginee-ring: C, 2017, 80, 558.
48 Deshetti J, Srinivasa R T, Victoria E C, et al. Journal of Materials Che-mistry B, 2017, 5, 720.
49 Yan X, Song Y, Wu X L, et al. Nanoscale, 2017, 9, 2317.
50 Han L, Shi J G, Liu A H. Sensors and Actuators B: Chemical, 2017, 252, 919.
51 Chen W, Chen J, Feng Y B, et al. Analyst, 2012, 137(7), 1706.
52 Rute A, Filipe N, Madalena H, et al. Advanced Functional Materials, 2011, 21(3), 501.
53 Chen Y, Chen T M, Wu C J, et al. Sensors and Actuators B: Chemical, 2019, 279, 374.
54 Wang X Y, Cao W, Lin T S, et al. Theranostics, 2017, 7(8), 2277.
55 Yang C, Xie Z Y, Zhang H P, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(23), 18985.
56 Chen C, Wang Y, Yang Z Q, et al. Chemical Engineering Journal, 2019, 369, 161.
57 Lin T R, Zhong L S, Guo L Q, et al. Nanoscale, 2014, 6, 11856.
58 Tian P L. Scientific and Technological Innovation, 2019(30),22(in Chinese).
田沛霖.科学技术创新,2019(30),22.
59 Yu J, Ma D Q, Mei L Q, et al. Journal of Materials Chemistry B, 2018, 6, 487.
60 Ma D Q, Yu J, Yin W Y, et al. Chemistry-A European Journal, 2018, 24, 15868.
61 Cai S F, Han Q S, Qi C, et al. Nanoscale, 2016, 8, 3685.
62 Nirala N R, Prakash R. Sensors and Actuators B: Chemical, 2018, 263, 109.
63 Narsingh R N, Shobhit P, Anushka B,et al. Biosensors and Bioelectro-nics, 2015, 74, 207.
64 Huang L Z, Zhu W X, Zhang W T,et al. Microchimica Acta, 2017, 185(1), 7.
65 Chen C, Wang Y, Zhang D. Microchimica Acta, 2019,186(12), 784.
66 Li L, Wang Q N, Chen Z B. Microchimica Acta, 2019, 186 (4), 1.
67 Zhu Z L, Peng X, Nie E, et al. Biosensors and Bioelectronics, 2019, 141, 111450.
68 Zhang Y, Wang Y N, Sun X T, et al. Sensors and Actuators B: Chemical, 2017, 246, 118.
69 Song C, Ding W, Zhao W W,et al. Biosensors and Bioelectronics, 2020, 151, 111983.
70 Liu Q L, Chen P P, Xu Z,et al. Sensors and Actuators B: Chemical, 2017, 251, 339.
71 Song Y, Wang X, Zhao C, et al. Chemistry-A European Journal, 2010, 16, 3617.
72 Dong W F, Huang Y M. Microchimica Acta, 2019, 187(1), 11.
73 Niu X H, He Y F, Zhang W C, et al. Sensors and Actuators B: Chemical, 2018, 256, 151.
74 Wu W W, Wang Q Q, Chen J X, et al. Nanoscale, 2019, 11, 12603.
75 Wang Y M, Liu J W, Gary B A, et al. Analytical Chemistry, 2017, 89, 12327.
76 Fan Y F, Zhang W C, Liu Y M, et al. ACS Applied Materials & Interfaces, 2019, 11(19), 17467.
77 Wu N, Wang Y T, Wang X Y, et al. Analytica Chimica Acta, 2019, 1091, 69.
78 Tian J Q, Liu Q, Abdullah M, et al. Nanoscale, 2013,5, 11604.
79 Zhang W C, Li X, Xu X C, et al. Journal of Materials Chemistry B, 2019, 7, 233.
80 Gitashree D, Jijnasa B, Prasenjit M, et al. Sensors and Actuators B: Chemical, 2019, 285, 277.
81 Zhou D D, Wang C S, Luo J J, et al. Microchimica Acta, 2019, 186(11), 735.
82 Wang Y, Liu R L, Chen G N, et al. Microchimica Acta, 2019, 186 (7), 446.
83 Su L, Cai Y X, Dong W P, et al. Microchimica Acta, 2020, 187(2), 132.
84 Luo L L, Wang P, Wang Y H, et al. Sensors and Actuators B: Chemical, 2018, 273, 1640.
85 Fatemeh H, Fatemeh H K, Shiva F, et al. Microchimica Acta, 2019, 186(4), 234.
86 Chen S H, Chi M Q, Yang Z Z, et al. Inorganic Chemistry Frontiers, 2017, 4, 1621.
87 Wang A L, Guan C, Shan G Y, et al. Microchimica Acta, 2019, 186(9), 1.
88 Yang L, Yang Z, Lian F. Materials Reports, 2019, 33(S2), 1(in Chinese).
杨磊, 杨志, 连锋. 材料导报, 2019, 33(S2), 1.
89 Zhao L Z, Wu Z P, Liu G N, et al. Journal of Materials Chemistry B, 2019, 7, 7042.
90 Vikas K S, Pradeep K Y, Subhash C, et al. Journal of Materials Chemistry B, 2018, 6, 5256.
91 Tang M Y, Zhu B Y, Wang Y, et al. Microchimica Acta, 2019, 186 (9), 1.
92 Chu S N, Huang W, Shen F Z, et al. Nanoscale, 2020, 12, 5829.
93 Moon Il Kim, Min Su Kim, Min-Ah Woo, et al. Nanoscale, 2014, 6, 1529.
94 Sun H Y, Liu X L, Wang X H, et al. Microchimica Acta, 2020, 187(2), 110.
95 Chen W F, Lyu G, Tao H C, et al. Materials Reports A:Review Papers, 2019, 33(4), 1156(in Chinese).
陈卫丰, 吕果, 陶华超, 等.材料导报:综述篇, 2019, 33(4), 1156.
96 Zhang L, Hai X, Xia C, et al. Sensors and Actuators B: Chemical, 2017, 248, 374.
97 Gajendar S, Amisha K, Manu S. Journal of Alloys and Compounds, 2020, 825, 154134.
98 Zhao M Y, Li Y, Ma X J, et al. Talanta, 2019, 200, 293.
99 Yi X L, Dong W F, Zhang X D, et al. Analytical and Bioanalytical Chemistry, 2016, 408, 8805.
100 Liu Y L, Zhao X J, Yang X X, et al. Analyst, 2013, 138, 4526.
101 Liu F F, He J, Zeng M L, et al. Journal of Nanoparticle Research, 2016, 18(5), 1.
102 Xiong Y H, Chen S H, Ye F G, et al. Chemical Communications, 2015, 51, 4635.
103 Zheng H Q, Liu C Y, Zeng X Y, et al. Inorganic Chemistry, 2018, 57(15), 9096.
104 Wang Y Y, Zhang H F, Wang D H, et al. ACS Biomaterials Science & Engineering, 2020, 6(3), 1438.
105 Yang H G, Yang R T, Zhang P, et al. Microchimica Acta, 2017, 184 (12), 4629.
106 Luo L P, Huang L Z, Liu X N, et al. Inorganic Chemistry, 2019, 58(17), 11382.
107 Chen J Y, Shu Y, Li H L, et al. Talanta, 2018, 189, 254.
108 Tan B, Zhao H M, Wu W H, et al. Nanoscale, 2017, 9, 18699.
109 Wu X L, Ge J, Yang C, et al. Chemical Communications, 2015, 51, 13408.
110 Zhao Z H, Pang J H, Liu W R, et al. Microchimica Acta, 2019, 186(5), 1.
111 Pan Y D, Pang Y J, Shi Y, et al. Microchimica Acta, 2019,186(4), 1.
112 Wang J N, Bao M Y, Wei T X, et al. Analytica Chimica Acta, 2020, 1098, 148.
113 Wu X J, Chen T M, Chen Y, et al. Journal of Materials Chemistry B, 2020,8, 2650.
114 Liu M W, He Y, Zhou J, et al. Analytica Chimica Acta, 2020, 1103, 134.
115 Li H Y, Wen Y Y, Zhu X X, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(1), 520.
116 Li Y P, Kang Z W, Kong L Y, et al. Materials Science and Engineering: C, 2019, 104, 110000.
[1] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[2] 刘文清, 张涛. 细菌视紫红质在生物传感器中的应用进展[J]. 材料导报, 2021, 35(23): 23171-23182.
[3] 戈明亮, 李越颖, 梁国栋. 纳米酶在传感检测中的应用研究进展[J]. 材料导报, 2021, 35(19): 19195-19203.
[4] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[5] 姚旭, 张光友, 刘博, 谢拯, 王煊军. 基于纳米金生长比色检测水体中的肼[J]. 材料导报, 2019, 33(z1): 310-313.
[6] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[7] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[8] 张仲达, 杨文芳. 层层自组装技术的研究进展及应用情况*[J]. 《材料导报》期刊社, 2017, 31(5): 40-45.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed