Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 20010038-10    https://doi.org/10.11896/cldb.20010038
  金属与金属基复合材料 |
锡锌系无铅钎料合金化研究进展
李芳1,2, 李才巨1,2,*, 彭巨擘3,*, 易健宏1,2, 高鹏1,2, 张家涛3, 关洪达1,2, 关一凡1,2
1 昆明理工大学材料科学与工程学院,昆明 650093
2 昆明理工大学材料基因工程研究院,昆明 650093
3 云南锡业集团(控股)有限责任公司研发中心,昆明 650106
Research Progress on the Alloying of Sn-Zn Lead-free Solder
LI Fang1,2, LI Caiju1,2,*, PENG Jubo3,*, YI Jianhong1,2, GAO Peng1,2, ZHANG Jiatao3, GUAN Hongda1,2, GUAN Yifan1,2
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Institute of Material Genome Engineering, Kunming University of Science and Technology, Kunming 650093, China
3 Research and Development Center, Yunnan Tin Group (Holding) Company Limited, Kunming 650106, China
下载:  全 文 ( PDF ) ( 12888KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Sn-Zn系无铅钎料因其熔点接近传统Sn-Pb系钎料的熔点、可兼容现有工艺、成本低廉等优点,而成为替代传统Sn-Pb钎料的重要钎料体系之一。然而,Sn-Zn系无铅钎料存在润湿性、抗氧化性、耐蚀性较差等问题,使其实际工程应用受到限制。研究表明,合金化是改善Sn-Zn系无铅钎料性能的有效途径。
为改善Sn-Zn钎料的润湿性、抗氧化性、耐蚀性、力学性能及抗蠕变性能等性能,研究者提出了不同的思路和解决方法。针对Sn-Zn系钎料润湿性差的问题,主要通过合金化方式来减小钎料表面张力和抑制界面处Cu-Sn金属间化合物的产生。为提升Sn-Zn系钎料的抗氧化性能,一方面可以通过添加比Zn更活泼的元素,使之与O2优先反应生成致密的氧化保护膜;另一方面可以向钎料中添加一定量的合金元素,使其与Sn或Zn形成具有抗氧化性的物相。通过合金化方式可以提高Sn-Zn系钎料腐蚀产物的钝化效果、调控富Zn相的形貌以及控制富Zn相的腐蚀扩散行为,从而提高钎料的耐蚀性。通过细晶强化、第二相强化以及固溶强化等方法可以提高Sn-Zn系钎料的力学性能,添加一定量的Ni、Sb以及RE等元素则可提高钎料的抗蠕变性能。
本文系统归纳了Sn-Zn系无铅钎料合金化的最新研究进展,分析了目前Sn-Zn无铅钎料合金化研究面临的困难和挑战,并展望了其未来的发展前景,可为制备高性能Sn-Zn系无铅钎料提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李芳
李才巨
彭巨擘
易健宏
高鹏
张家涛
关洪达
关一凡
关键词:  Sn-Zn系无铅钎料  合金化  显微组织  性能    
Abstract: Owing to the merits of similar eutectic melting point to the traditional Sn-Pb solders, compatibility with existing technology, and low cost etc., the Sn-Zn lead-free solders have been considered as one of the most promising alternatives for the conventional Sn-Pb solders. However, the Sn-Zn lead-free solder has problems such as poor wettability, oxidation resistance and corrosion resistance, which limit its practical engineering application. Studies have shown that alloying is an effective way to improve the performance of Sn-Zn lead-free solders.
In order to improve the wettability, oxidation resistance, corrosion resistance, mechanical properties and creep resistance of Sn-Zn solder, researchers have proposed different methods and solutions. Addressing the problem of poor wettability of Sn-Zn solders, alloying methods are mainly used to reduce its surface tension and suppress the formation of Cu-Sn intermetallic compounds at the interface. To improve the oxidation resistance of Sn-Zn solders, on the one hand, elements more active than Zn can be added to react preferentially with O2 and then form a dense oxide protective film; on the other hand, a certain amount of alloying element can be added to the solder to form oxidation resistant phases with Sn or Zn. In addition, the passivation effect of corrosion products, the morphology of Zn-rich phase and the corrosion diffusion behavior of Zn-rich phase can be optimized by alloying method, so as to enhance the corrosion resistance of Sn-Zn solder. The mechanical properties of Sn-Zn solders are mainly improved by means of fine grain strengthening, second phase strengthening and solid solution strengthening, while the creep resistance of solders can be improved by adding a certain amount of Ni, Sb, RE and other elements.
This paper summarized the latest research progress in the alloying of Sn-Zn lead-free solders systematically. Furthermore, the difficulties and challenges about the studies on Sn-Zn lead-free solders were analyzed, and its future development prospects were prospected. The purpose of this paper is to provide some references for the preparation of high-performance Sn-Zn lead-free solders.
Key words:  Sn-Zn lead-free solder    alloying    microstructure    property
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TG425+.1  
基金资助: 云南省稀贵金属材料基因工程重大科技专项(2018ZE007;2019ZE001-3;202002AB080001);云南省中青年学术和技术带头人后备人才项目(202005AC160039)
通讯作者:  * lcj@kust.edu.cn;Jubopeng@ytc.cn   
作者简介:  李芳,2017年6月毕业于辽宁工业大学,获得工学学士学位。2020年7月毕业于昆明理工大学,获得硕士学位。目前主要研究领域为锡锌系无铅钎料合金化研究。
李才巨,博士,昆明理工大学材料科学与工程学院教授、博士研究生导师。2000年7月本科毕业于昆明理工大学金属压力加工专业,2003年7月硕士毕业于清华大学材料学专业,2014年7月在昆明理工大学材料学专业取得博士学位。主要从事金属基复合材料、材料基因工程与无铅锡基钎料等先进金属材料研究工作。近年来,在Carbon、Applied Physics Letter、Scripta Materialia、Materials Science and Engineering A等国内外学术期刊发表论文100余篇。
彭巨擘,博士,云南锡业集团(控股)有限责任公司正高级工程师、博士研究生导师,主要从事金属材料、高纯材料、材料基因工程等方面研究工作。1997年本科毕业于华东理工大学无机材料专业,2005年获昆明理工大学材料学硕士学位,2010年获材料学工学博士学位(昆明理工大学& Max-Planck Institute for Solid State Research联合培养博士)。近年来,在国内外学术期刊上发表文章30多篇,获授权发明专利12件。
引用本文:    
李芳, 李才巨, 彭巨擘, 易健宏, 高鹏, 张家涛, 关洪达, 关一凡. 锡锌系无铅钎料合金化研究进展[J]. 材料导报, 2022, 36(13): 20010038-10.
LI Fang, LI Caiju, PENG Jubo, YI Jianhong, GAO Peng, ZHANG Jiatao, GUAN Hongda, GUAN Yifan. Research Progress on the Alloying of Sn-Zn Lead-free Solder. Materials Reports, 2022, 36(13): 20010038-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20010038  或          http://www.mater-rep.com/CN/Y2022/V36/I13/20010038
1 Geng Z T, He Q, Chen G H, et al. Rare Metal Materials and Enginee-ring, 2012, 41(s2), 164 (in Chinese).
耿志挺, 何青, 陈国海, 等. 稀有金属材料与工程, 2012, 41(s2), 164.
2 Wang Z H, Yu H J, Li S M, et al. Electronic Components and Materials, 2014, 33(11), 95 (in Chinese).
王正宏, 于红娇, 李胜明, 等. 电子元件与材料, 2014, 33(11), 95.
3 Zhou J, Sun Y, Xue F. Journal of Alloys and Compounds, 2005, 397(1-2), 260.
4 Islam R A, Chan Y C, Jillek W, et al. Microelectronics Journal, 2006, 37(8), 705.
5 Basaty A B E, Deghady A M, Eid E A. Materials Science & Engineering A, 2017, 701(31), 245.
6 Zhou J, Sun Y S, Xue F. Acta Metall Sinica, 2005, 41(7), 743 (in Chinese).
周健, 孙扬善, 薛烽. 金属学报, 2005, 41(7), 743.
7 Kotadia H R, Howes P D, Mannan S H. Microelectronics Reliability, 2014, 54(6-7), 1253.
8 Qi Y,Zbrzezny A R, Agia M, et al. Journal of Electronic Materials, 2004, 33(12), 1497.
9 Ding M, Xing W, Yu X, et al. Journal of Alloys & Compounds, 2017, 739, 481.
10 Jung D H, Sharma A, Jung J P. Journal of Alloys & Compounds, 2018, 743, 300.
11 Sharma A, Jang Y J, Kim J B, et al. Journal of Alloys & Compounds, 2017, 704, 795.
12 Sharma A, Kumar S, Jung D H, et al. Journal of Mate-rials Science Materials in Electronics, 2017, 28(11), 8116.
13 Shalaby R M, Kamal M, Ali E A M, et al. Silicon, 2018, 10(5), 1861.
14 Jain C C, Chen C L, Lai H J, et al. Journal of Materials Engineering & Performance, 2011, 20(6), 1043.
15 Chuang T H, Lin H J. Journal of Electronic Materials, 2009, 38(3), 420.
16 Amore S, Ricci E,Borzone G, et al. Materials Science & Engineering A, 2008, 495(1-2), 108.
17 Prabhu K N, Deshapande P, Satyanarayan. Materials Science & Enginee-ring A, 2012, 533(1), 64.
18 Mayappan R, Ismail A B, Ahmad Z A, et al. Materials Letters, 2006, 60(19), 2383.
19 Wang Y T, Jen H C, Lung T H. Materials Transactions, 2010, 51(9), 1735.
20 Fima P, Pstrus' J, Sypień A. Journal of Materials Engineering & Perfor-mance, 2012, 21(5), 595.
21 Law C M T, Wu C M L, Yu D Q, et al. Journal of Electronic Materials, 2006, 35(1), 89.
22 Wang L, Yu D Q, Zhao J, et al. Materials Letters, 2002, 56(6), 1039.
23 Xia Z, Chen Z, Shi Y, et al. Journal of Electronic Materials, 2002, 31(6), 564.
24 Chen W X, Xue S, Wang H, et al. Journal of Materials Science Materials in Electronics, 2010, 21(7), 719.
25 Wang H,Xue S, Zhao F, et al. Journal of Materials Science: Materials in Electronics, 2009, 21(2), 111.
26 Ye H, Xue S, Pecht M. Journal of Materials Research, 2012, 27(14), 1887.
27 Ye H, Xue S, Pecht M. Materials Letters, 2013, 98(5), 78.
28 Yang M, Liu X Z, Liu X H, et al. In: Conference Record of the 2010 IEEE 11th International Conference on Electronic Packaging Technology & High Density Packaging. Xi'an, 2010, pp. 784.
29 Liu J C, Zhang G, Wang Z H, et al. Materials & Design, 2015, 84(5-6), 331.
30 Mayappan R, Ahmad Z A. Intermetallics, 2010, 18(4), 730.
31 Liu L, Zhou W, Li B, et al. Journal of Alloys and Compounds, 2009, 482(1-2), 90.
32 Liu L, Wu P, Zhou W. Microelectronics Reliability, 2014, 54(1), 259.
33 Lee J E, Kim K S, Inoue M, et al. Journal of Alloys & Compounds, 2008, 454(1), 310.
34 Song J M, Lan G F, Lui T S, et al. Scripta Materialia, 2003, 48(8), 1047.
35 Tsai Y L, Hwang W S. Materials Science & Engineering A, 2005, 413(6), 312.
36 Das S K, Sharif A, Chan Y C, et al. Microelectronic Engineering, 2009, 86(10), 2086.
37 Yang L, Wei D, Zhang Y, et al. Journal of Materials Science: Materials in Electronics, 2018, 30(1), 753.
38 Jiang J, Lee J E, Kim K S, et al. Journal of Alloys & Compounds, 2008, 462(1), 244.
39 Zhang L,Xue S B, Gao L L, et al. Journal of Materials Science Materials in Electronics, 2010, 21(1), 1.
40 Chen W X, Xue S B, Wang H. Materials & Design, 2010, 31(4), 2196.
41 Liu N S, Lin K L. Oxidation of Metals, 2012, 78(5-6), 285.
42 Zhang L, Sun L, Guo Y H, et al. Journal of Materials Science Materials in Electronics, 2014, 25(3), 1209.
43 Yu D Q,Xie H P, Wang L. Journal of Alloys & Compounds, 2004, 385(1-2), 119.
44 Wang S H, Chin T S, Yang C F, et al. Journal of Alloys and Compounds, 2010, 497(1-2), 428.
45 Chidambaram V,Hald J, Ambat R, et al. JOM, 2009, 61(6), 59.
46 Liu J C, Zhang G, Ma J S, et al. Journal of Alloys & Compounds, 2015, 644(273), 113.
47 Liu J C, Park S, Nagao S, et al. Corrosion Science, 2015, 92, 263.
48 Chang T C, Wang J W, Wang M C, et al. Journal of Alloys & Compounds, 2006, 422(1-2), 239.
49 Chen W X,Xue S B, Wang H, et al. Rare Metal Materials and Enginee-ring, 2010, 39 (10), 1702 (in Chinese).
陈文学, 薛松柏, 王慧, 等. 稀有金属材料与工程, 2010, 39(10), 1702.
50 Mohanty U S, Lin K L. Materials Science & Engineering A, 2005, 406(1), 34.
51 Huang H Z, Wei X Q, Tan D Q, et al. International Journal of Mine-rals Metallurgy and Materials, 2013, 20(6), 563.
52 Xie J Y, Wang Z H, Chen Y M, et al. Electronic Components and Mate-rials, 2017, 36(8), 103 (in Chinese).
谢景洋, 王正宏, 陈一鸣, 等. 电子元件与材料. 2017, 36(8), 103.
53 Jiang S L, Zhong J F, Li J Y, et al. Journal of Central South University, 2020, 27(3), 711.
54 Huang Y C, Chen S W. Journal of Electronic Materials, 2010, 40(1), 62.
55 Wang C H, Huang S E, Liu J L. Journal of Electronic Materials, 2012, 41(12), 3259.
56 Wang C H, Huang S E, Huang P Y. Journal of Electronic Materials, 2015, 44(12), 4907.
57 Huang N, Hu A, Li M, et al. Journal of Materials Science Materials in Electronics, 2013, 24(8), 2812.
58 Hu J, Luo T, Hu A, et al. Journal of Electronic Materials, 2011, 40(7), 1556.
59 Liu G, Khorsand S, Ji S. Journal of Materials Science & Technology, 2019, 35(8), 1618.
60 El-Daly A A, Hammad A E, Al-Ganainy G S, et al. Materials and Design, 2014, 56(4), 594.
20010038-961 El-Daly A A, Hammad A E, Al-Ganainy G A, et al. Materials & Design, 2013, 52(24), 966.
62 Shafiq I, Chan Y C, Wong N B, et al. Journal of Materials Science Materials in Electronics, 2012, 23(7), 1427.
63 Abtew M, Selvaduray G. Materials Science & Engineering R, 2000, 27(5), 95.
64 Luo T, Hu A, Hu J, et al. Microelectronics Reliability, 2012, 52(3), 585.
65 Ren G, Collins M N. Materials & Design, 2017, 119, 133.
66 Gain A K, Chan Y C, Yung W K C. Materials Science and Engineering: B, 2009, 162(2), 92.
67 Billah M M, Shorowordi K M, Sharif A. Journal of Alloys & Compounds, 2014, 585(6), 32.
68 Silva B L, Spinelli J E. Materials Research, 2018, 21(2), e20170877.
69 Das S K, Sharif A, Chan Y C, et al. Journal of Alloys & Compounds, 2009, 481(1), 167.
70 Ahmed M, Fouzder T, Sharif A, et al. Microelectronics Reliability, 2010, 50(8), 1134.
71 Chang T C, Hon M H, Wang M C. Materials Research Bulletin, 2003, 38(5), 909.
72 Chen K I, Cheng S C, Wu S, et al. Journal of Alloys & Compounds, 2006, 416(1), 98.
73 Behera C K, Shamsuddin M. Thermochimica Acta, 2009, 487(1), 18.
74 Chen W,Xue S, Wang H, et al. Journal of Materials Science Materials in Electronics, 2010, 21(5), 496.
75 Lin H J, Chuang T H. Journal of Electronic Materials, 2010, 39(2), 200.
76 Yao Y, Feng X, Jian Z, et al. Journal of Materials Engineering and Performance, 2015, 24(8), 2908.
77 Yavuzer B, Özyürek D, Tunçay T. Materials Science-Poland, 2020, 38(1), 34.
78 El-Daly A A, Hashem H A, Radwan N, et al. Journal of Materials Science Materials in Electronics, 2016, 27(3), 2950.
79 Wadud M A, Gafur M A, Qadir M R, et al. Materials Sciences & Applications, 2015, 6(6), 792.
80 Alam S N, Mishra M K, Padhy M, et al. Transactions of the Indian Institute of Metals, 2015, 68(5), 881.
81 Ma H. Journal of Materials Science, 2009, 44(14), 3841.
82 Mahmudi R, Geranmayeh A R, Bakherad M, et al. Materials Science & Engineering A, 2007, 457(1-2), 173.
83 Shrestha T, Gollapudi S, Charit I, et al. Journal of Materials Science, 2014, 49(5), 2127.
84 Saad G, Fawzy A, Shawky E. Journal of Alloys & Compounds, 2009, 479(1), 844.
85 Chen W,Xue S, Hui W, et al. Journal of Materials Science Materials in Electronics, 2010, 21(5), 496.
86 Mahmudi R, Geranmayeh A R, Zahiri B, et al. Journal of Materials Science Materials in Electronics, 2010, 21(1), 58.
87 Wu C M L, Wong Y W. Journal of Materials Science: Materials in Electronics, 2007,18(1-3), 77.
88 Xue P, Xue S B, Shen Y F, et al. Transactions of the China Welding Institution, 2011, 32(8), 53 (in Chinese).
薛鹏, 薛松柏, 沈以赴, 等. 焊接学报, 2011, 32(8), 53.
89 Ye H, Xue S B, Xue P, et al. Transactions of the China Welding Institution, 2012, 33(4), 42 (in Chinese).
叶焕, 薛松柏, 薛鹏, 等. 焊接学报, 2012, 33(4), 42.
90 Ye H, Xue S, Pecht M. Journal of Materials Research, 2012, 27(14), 1887.
91 Ye H, Xue S, Luo J, et al. Materials & Design, 2013, 46(4), 816.
92 Ye H, Xue S, Zhang L, et al. Journal of Alloys and Compounds, 2011, 509(5), 52.
93 Ye H, Xue S, Chen C, et al. Soldering and Surface Mount Technology, 2013, 25(3), 139.
94 Lin H J, Chuang T H. Journal of Electronic Materials, 2010, 39(2), 200.
95 Jain C C, Chen C L, Lai H J, et al. Journal of Materials Engineering & Performance, 2011, 20(6),1043.
96 Xue P, Xue S B, Shen Y F, et al. Journal of Electronic Materials, 2014, 43(9), 3404.
97 Lin Y L, Chang C W, Tsai C M, et al. Journal of Electronic Materials, 2006, 35(5), 1010.
98 Chen C M, Chen S W. Acta Materialia, 2002, 50(9), 2461.
99 Yao J, Wei G Q, Shi Y H. Soldering Technology, 2010, 39(3), 1 (in Chinese).
姚健, 卫国强, 石永华. 焊接技术, 2010, 39(3), 1.
100 Lin K L, Lin G P. In: 2007 Proceedings 57th Electronic Components and Technology Conference. USA, 2007, pp. 1467.
101 Chen C M, Huang C C. Journal of Materials Research, 2008, 23(4), 1051.
102 Kuo S M, Lin K L. Journal of Electronic Materials, 2007, 36(10), 1378.
103 Hung Y M, Chen C M. Journal of Electronic Materials, 2008, 37(6), 887.
104 Chen C M, Hung Y M, Lin C P, et al. Journal of Alloys and Compounds, 2009, 475(1), 238.
105 Huang M L, Zhang Z J, Zhao N, et al. Scripta Materialia, 2013, 68(11), 853.
106 Huang M L, Zhang Z J, Feng X F, et al. Acta Metallurgica Sinica, 2015, 51(1), 93 (in Chinese).
黄明亮, 张志杰, 冯晓飞, 等. 金属学报, 2015, 51(1), 93.
107 Zhang F. Size effect on tensile properties of Cu/Sn-9Zn(SAC305)/Cu solder interconnects under aging and current stressing. Master's Thesis, Dalian University of Technology, China, 2015 (in Chinese).
张飞. 尺寸效应下时效及电迁移对Cu/Sn-9Zn(SAC305)/Cu拉伸性能的影响. 硕士学位论文, 大连理工大学, 2015.
108 Ma H L. Development of new flux used for Sn-9Zn lead free solder. Master's Thesis, Dalian University of Technology, China, 2006 (in Chinese).
马洪列. Sn-9Zn无铅钎料助焊剂的研究. 硕士学位论文, 大连理工大学, 2006.
109 Wu M. Electronic Components and Materials, 2006, 25(9), 43 (in Chinese).
吴敏.电子元件与材料, 2006, 25(9), 43.
110 Zhao Y K. Study of Sn-9Zn lead-free solder suitable flux. Master's Thesis, Harbin University of Science and Technology, China, 2012 (in Chinese).
赵义坤. Sn-9Zn无铅钎料适用助焊剂的研究. 硕士学位论文, 哈尔滨理工大学, 2012.
111 Jin Q J. A study of new flux for Sn-9Zn lead-free electronic solders. Master's Thesis, Nanchang University, China, 2005 (in Chinese).
金泉军. Sn-9Zn无铅电子钎料新型助焊剂研究. 硕士学位论文, 南昌大学, 2005.
112 Han R N, Xue S B, Hu Y H, et al. Transactions of the China Welding Institution, 2012, 33(10), 101 (in Chinese).
韩若男, 薛松柏, 胡玉华, 等. 焊接学报, 2012, 33(10), 101.
113 Liu Y, Ding Y H, Mao Z G, et al. Plating & Finishing, 2017, 39(6), 12 (in Chinese).
刘月, 丁运虎, 毛祖国, 等. 电镀与精饰, 2017, 39(6), 12.
114 Zhang S Y. Electronic Components & Materials, 2007(9), 21 (in Chinese).
章士瀛. 电子元件与材料, 2007(9), 21.
115 Wang Y, Fang Z, Ma N, et al. Journal of Materials Science, 2017, 28(1), 94.
116 Xu D X, Lei Y P, Xia Z D, et al. Electronic Components & Materials, 2005(12), 26 (in Chinese).
徐冬霞, 雷永平, 夏志东, 等. 电子元件与材料, 2005(12), 26.
117 Han R N. Development of special flux matching Sn-Zn lead-free solder for electronic packaging. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2013 (in Chinese).
韩若男. 电子封装用Sn-Zn无铅钎料专用助焊剂研究. 硕士学位论文, 南京航空航天大学, 2013.
[1] 晏彩先, 许明明, 陈祝安, 王姿奥, 刘伟平, 常桥稳. 新型铱配合物[Ir(pmppy)2(Br2bpy)]PF6的合成、晶体结构及光物理性能测试[J]. 材料导报, 2022, 36(Z1): 21090264-5.
[2] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[3] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[4] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[5] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[6] 丁滔, 金珊珊, 索智, 季节, 张扬. 嵌锁式沥青稳定碎石配合比设计及性能研究[J]. 材料导报, 2022, 36(Z1): 22030296-5.
[7] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[8] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[9] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[10] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[11] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[12] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[13] 胡家富, 谢春晓, 陶平均. 结构状态对全金属Fe基非晶合金腐蚀性能的影响[J]. 材料导报, 2022, 36(Z1): 21120217-5.
[14] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[15] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed