Abstract: Hydrogen is the cleanest fuel because it does not produce any toxic by-products to the environment and has a high energy density of 120 kJ/g, more than three times higer than that of oil. It is an ideal alternative energy carrier for fuel cell and has broad prospects for development and application in the near future. As a hydrogen storage medium, NaBH4 contains hydrogen with a mass fraction of 10.7%, which is much higher than other chemicals, and its solution can be stored for a long time. In the presence of a catalyst, the rate of hydrogen release can be controlled. Although precious metal catalysts have high activity and stability, the researchers focused on non-precious metal catalysts due to limited resources and high costs. Cobalt-based catalysts have broad commercial application prospects due to their high activity, lower cost than precious metals and more abundant reserves. However, one of the weaknesses of cobalt is the passivation and deactivation of borate due to its strong adsorption. The electronic structure of cobalt can be modified by alloying in order to reduce cobalt adsorption. Cobalt-based catalysts are mainly divided into supported catalysts and unsupported catalysts. The surface area of unsupported cobalt-based catalysts is usually small, and it is easy to agglomerate in the exothermic hydrolysis reaction, resulting in reduced catalytic performance and ser-vice life. Therefore, the cobalt-based active ingredients are usually carried on the carrier. Due to the strong interaction between the metal cobalt and the catalyst carrier, and the synergistic effect with other elements, the cobalt-based catalyst exhibits a higher performance in the process of hydrogen production by the hydrolysis of sodium borohydride. In addition, adding dopants such as B or P, and alloying with other transition metals (Ni, Fe, Cu, Mo, Zn, W, Cr, etc.) or rare earth metals (Ce, Pr, La, etc.) can also improve its catalytic performance. There are many kinds of cobalt-based catalysts, including cobalt nanoparticles, metallic cobalt, cobalt salts, and cobalt oxides. This paper reviews the research progress of cobalt-based catalysts used to catalyze the hydrolysis of NaBH4 including the hydrolysis principle of NaBH4, the classification of cobalt-based catalysts and the influencing factors of cobalt-based catalysts used to catalyze the hydrolysis of NaBH4. It focuses on the research progress of cobalt-based supported catalysts, and puts forward the current problems in the development of cobalt-based catalysts and prospects for the future development of cobalt based catalysts.
1 Yang L, Wang K, Du G, et al. Nanotechnology, 2016, 27(47), 475702. 2 Hashimi A S, Nohan M, Chin S X. et al. Nanomaterials (Basel, Swit-zerland), 2020, 10(6), 1153. 3 Tignol P, Demirci U B. International Journal of Hydrogen Energy, 2019, 44(27), 14207. 4 Shaeel A, Zaheer K, Maqsood A, et al. International Journal of Hydrogen Energy, 2019, 44 (31), 16452. 5 Hao S, Yang L, Cui L, et al. Nanotechnology, 2016, 27(46), 4603. 6 Bakhtyari A, Makarem M A, Rahimpour M R. Fuel Cells and Hydrogen Production, Springer press, US, 2019, pp.947. 7 Hosseini M G, Mahmoodi R. Journal of Colloid and Interface Science, 2017, 500, 264. 8 Luo C, Fu F Y, Yang X J, et al. ChemCatChem, 2019, 11(6), 1643. 9 Cui L, Sun X, Xu Y, et al. Journal of Chemistry, 2016, 22(42), 14831. 10 Demirc S, Yildiz M, Inger E, et al. Renewable Energy,2020,147(1),69. 11 Kaya M. International Journal of Hydrogen Energy,2020,45(23),12743. 12 Ghodke N P, Rayaprol S, Bhoraskar S V, et al. International Journal of Hydrogen Energy, 2018, 202, 669. 13 Ozay H, Ilgin P, Ozay O. International Journal of Hydrogen Energy, 2020, 45(35), 17613. 14 Feng Y F, Zhu Y M, Li Y Z, et al. International Journal of Hydrogen Energy, 2020, 45(35), 17444. 15 Chen W, Fu W, Qian G, et al. Science, 2020, 23(3), 100922. 16 Ma J H, Wu S B, Liu Y, et al. Journal of Tianjin Polytechnic University, 2016, 35 (2), 45. 17 Zhang M, Liu L, Lu S, et al. Chemistry Select, 2019, 4 (35), 10494. 18 Du X Q, Liu C, Du C, et al. Nano Research, 2017, 10(8), 2856. 19 Rezaei M, Chermahini A N. International Journal of Hydrogen Energy, 2020, 45(41), 20993. 20 Sofue Y, Nomura K, Inagaki A. Chem Commun (Camb), 2020, 56(33), 4519. 21 Luo Y, Yang Q, Nie W, et al. ACS Applied Material Interfaces, 2020, 12(7), 8082. 22 Baytar O. Acta Chimica Slovenica, 2018, 65(2), 407. 23 Park D, Kim T. Journal of Nanosci Nanotechnol, 2016, 16(2), 1740. 24 Xu J N, Du X X, Wei Q L, et al. Chemistry Select, 2020, 5(22), 6526. 25 Xu D Y, Zhao L, Dai P. Journal of Natural Gas Chemistry, 2012, 21(5), 488. 26 Minkina V, Kalinin V, Shabunya S. Theoretical Foundations of Chemical Engineering, 2016, 50(4), 536. 27 Song, C, Zhang, D, Wang B. et al. Nano Research, 2016, 9, 3322. 28 Feng Y, Bin D, Yan B, et al. Journal of Colloid and Interface Science, 2017, 493, 190. 29 Filiz B C, Figen A K. International Journal of Hydrogen Energy, 2019, 44 (20), 9883. 30 Simoes M, Baranton S, Coutanceau C. Journal of Physical Chemistry, 2016, 113(30), 13369. 31 Boran A, Erkan S, Ozkar S, et al. International Journal of Energy Research, 2013, 37(5), 443. 32 Zhu J, Li R, Niu W L. Journal of Power Sources , 2012, 211, 33. 33 Bekirogullari M, Kaya M, Saka C. International Journal of Hydrogen Energy, 2019, 44(14), 7262. 34 Walter J C, Zurawski A, Montgomery D, et al. Journal of Power Sources, 2008, 179, 335. 35 Kojima Y, Suzuki K, Fukumoto K, et al. International Journal of Hydrogen Energy, 2002, 27(10), 1029. 36 Liang Y, Wang P, Dai H B. Journal of Alloys and Compounds, 2010, 491, 359. 37 Deonikar V G, Rathod P V, Pornea A M, et al. Journal of Industrial and Engineering Chemistry, 2020, 86, 167. 38 Ke D, Tao Y, Li Y, et al. International Journal of Hydrogen Energy, 2015, 40(23), 7308. 39 Didehban A, Zabihi M, Shahrouzi J R. International Journal of Hydrogen Energy, 2018, 43(45), 20645. 40 Guo Y, Dong Z, Cui Z, et al. International Journal of Hydrogen Energy, 2012, 37(2), 1577. 41 Wang Y, Shen Y, Cao Z Q, et al. Renewable Energy, 2016, 89, 285. 42 Aydin M, Hasimoglu A, Ozdemir O. International Journal of Hydrogen Energy, 2016, 41(1), 239.20090051-20090051- 43 Kibar M E, Engintepe E. International Journal of Chemical Kinetics, 2018, 50(12), 837. 44 Paladini M, Arzac G M, et al. Applied Catalysis B: Environmental, 2017, 210, 342. 45 Didehban A, Zabihi M, Babajani N. Polyhedron, 2020, 180, 114405. 46 Wang W Y, Yang Y Q, Luo H A, et al. Catalysis Communications, 2010, 11(9), 803. 47 Zhang X Y, Sun X W, Xu D Y, et al. Applied Surface Science, 2019, 469, 764. 48 Panel M, Paladini G M, Arzac V, et al. Applied Catalysis B: Environmental, 2017, 210, 342. 49 Virendrakumar P G, Deonikara H. Journal of Industrial and Engineering Chemistry, 2020, 86, 167. 50 Makiabadi M, Tayebeh S, Mostafavi A. International Journal of Hydrogen Energy, 2020, 45(3), 1706. 51 Zhang J, Zhang D, Cui C, et al. Dalton Transactions, 2019, 48(35), 13248. 52 Joydev M, Binayak R, Pratibha S. Applied Mechanics and Materials, 2014, 490-491(6), 213. 53 Liu B H, Li Z P, Suda S. Journal of Alloys and Compounds, 2006, 415(1-2), 288. 54 Ye W, Zhang H, Xu D, et al. Journal of Power Sources, 2007, 164(3), 544. 55 Lee J, Yong K, Ryul C, et al. Catalysis Today, 2007, 120(2), 305. 56 Xu D, Dai P, Liu B, et al. Journal of Power Sources, 2008, 182, 616. 57 Rakap M. Applied Catalysis B: Environmental, 2009, 91(6), 21. 58 Zhang H M, Feng X L, Cheng L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 112. 59 Özdemir E. International Journal of Hydrogen Energy, 2015, 40(40), 14045. 60 Sonia E, Demirci U B, Silva T M, et al. International Journal of Hydrogen Energy, 2016, 41(20), 8438. 61 Zhou C C, Hsieh C H, Chen B H, et al. Energy, 2015, 90 (2), 1973. 62 Aydin M, Hasimoglu A, Ozdemir O. International Journal of Hydrogen Energy, 2016, 41(1), 239. 63 Wang Y, Wang D, Zhao C, et al. International Journal of Hydrogen Energy, 2019, 44(21), 10508. 64 Gupta S, Patel N, Fernandes R, et al. International Journal of Hydrogen Energy, 2013, 38(34), 14685. 65 Patel N, Fernandes R, Miotell A. et al. Journal of Power Sources, 2009, 188(2), 411. 66 Chang J, Tian H J, Du F L. International Journal of Hydrogen Energy, 2014, 39(25), 13087. 67 Wei L, Ma M, Lu Y, et al. Functional Materials Letters, 2017, 10(5), 1750065. 68 Zou, Y J, Yin Y, Gao Y B. International journal of Hydrogen Energy, 2018, 43(10), 4912. 69 Ma J H, Su Y M, Liu Y. Journal of Tianjin University of Technology, 2020, 39(1), 31(in Chinese). 马敬环,苏彦铭,刘莹. 天津工业大学学报, 2020, 39(1), 31. 70 Loghmani M H, Shojaei A F. International Journal of Hydrogen Energy, 2013, 38(25), 10470. 71 Ozdemir E. International Journal of Hydrogen Energy, 2015, 40(40), 14045. 72 Li Y, Hou X W, Wang J, et al. International Journal of Hydrogen Energy, 2019, 44(55), 29075. 73 Chen H M, Liu R S, Chang S M, et al. International Journal of Hydrogen Energy, 2012, 37(4), 3338. 74 Wang W Y, Yang Y Q, Luo H A. Catalysis Communications, 2010, 11(9), 803. 75 Zou Y, Yin Y, Gao Y, et al. International Journal of Hydrogen Energy, 2018, 43(10), 4912. 76 Wei Y S, Huang X K, Wang J Y. International Journal of Hydrogen Energy, 2017, 42(41), 25860. 77 Arzac G M, Paladini M. Scientific Reports, 2018, 8(1), 1. 78 Daeil P, Taegyu K. Journal of Nanoscience and Nanotechnology, 2016, 16, 1740. 79 Wang L N, Li Z, Liu X, et al. International Journal of Hydrogn Energy, 2015, 40(25), 7965. 80 Rakap M, Kalua E, Özkar S. Journal of Alloy Compound, 2011, 509, 7016. 81 Xiang C L, Jiang D D, Zou Y J, et al. Hydrogen Energy, 2015, 40, 4111. 82 Hyeon K D, Seunghyun J, JunHwa K, et al. International Journal of Hydrogen Energy, 2019, 44(29), 15228. 83 Kahri H, Flaud V, Touati R, et al. RSC Advances, Royal Society of Chemistry, 2016, 6(104), 102498. 84 Gupta S, Patel N, Fernandes R, et al. Electrochimica Acta, 2017, 232, 64. 85 Zhao Y, Ning Z, Tian J, et al. Journal of Power Sources, 2012, 207(6), 120. 86 Fernandes R, Patel N, Miotello A, et al. Topics in Catalysis, 2012, 55(14-15), 1032. 87 Zabielaité A, Balcˇiūnaité A, Stalnioniené I, et al. International Journal of Hydrogen Energy, 2018, 43(52), 23310. 88 Sahiner N, Yasar A O. Fuel Process Technol, 2014, 125, 148. 89 Gang B G, Jung W, Kwon S. International Journal of Hydrogen Energy, 2015, 41(1), 524. 90 Bozkurt G, Ozer A, Yurtcan A B. Energy, 2019, 180(1), 702. 91 Raghava K R, Venkata C H, Nadagouda, M N. et al. Journal of Environmental Management, 2019, 238(2), 25. 92 Eugénio S, Demirci U B, Silva T M, et al. International Journal of Hydrogen Energy, 2016, 41(20), 8438. 93 Wang Y P, Wang Y J, Ren Q L, et al. Fuel Cells, 2010, 10(1),132. 94 Netskina O V, Ozerova A M, Komova O V, et al. Energies, 2019,12(7), 1. 95 Kaya M, Bekirogullari M. European Journal of Science and Technology, 2019, 16, 69. 96 Zhang J, Zhang D, Cui C, et al. Dalton Transactions, 2019, 48(35), 13248. 97 Lee J, Yong K, Ryul C, et al. Catalysis Today, 2007, 120(2), 305. 98 Joydev M, Binayak R, Pratibha S. Applied Mechanics and Materials, 2014, 490(6), 213. 99 Kim S J, Lee J, Kong K Y, et al. Power Sources, 2007,170, 412. 100 Kojima Y, Suzuki K, Fukumoto K, et al. Power Sources, 2004, 125, 22. 101 Marchionni A, Bevilacqua M, Filippi J, et al. Journal of Power Sources, 2015, 299(20), 391