Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20090051-11    https://doi.org/10.11896/cldb.20090051
  金属与金属基复合材料 |
钴基催化剂催化NaBH4制氢研究进展
徐欢, 于佳蕊, 曹中秋, 王艳, 张轲
沈阳师范大学化学化工学院,沈阳 110034
Hydrogen Generation from Sodium Borohydride by Co-based Catalysts: a Review
XU Huan, YU Jiarui, CAO Zhongqiu, WANG Yan, ZHANG Ke
College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
下载:  全 文 ( PDF ) ( 5992KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢气是清洁燃料,不会对环境产生任何有毒副产品,且氢气具有很高的能量密度,约为120 kJ/g,比石油的三倍还多,是燃料电池理想的替代能源载体。未来,氢气具有广阔的发展空间和应用前景,但氢的存储安全问题需要进一步解决,而化学储氢对实现这一目标起着至关重要的作用。
NaBH4作为储氢材料,其氢含量高达10.7%(质量分数),远高于其它化学品,且NaBH4溶液可长期贮存,在有催化剂的情况下,其放氢速率可得到控制。虽贵金属催化剂具有优越的催化活性和稳定性,但由于资源有限且成本高,研究人员开始重点研究非贵金属催化剂。其中,钴基催化剂,因其活性高、比贵金属便宜以及储量丰富等优点而受到越来越多的关注,具有广阔的商业应用前景。然而钴的弱点之一是由于硼酸盐的强吸附作用使其表面钝化而失活,通过与金属合金化可以改变钴的电子结构,减少钴的吸附。
钴基催化剂主要分为载体型催化剂和无载体型催化剂。无载体钴基催化剂表面积通常较小,且其在放热水解反应中容易团聚,导致催化性能降低和使用寿命减短。因此钴基活性组分通常负载于载体上,由于金属钴与催化剂载体间存在强相互作用以及与其它元素间的协同效应,使得钴基催化剂在硼氢化钠水解制氢过程中表现出较高的催化活性。此外,加入掺杂剂如B或P,以及与另一种过渡金属(Ni、Fe、Cu、Mo、Zn、W和Cr等)或稀土金属(Ce、Pr和La等)合金化也可以提高其催化效能。钴基催化剂有很多种,包括钴纳米颗粒、金属钴、钴盐及氧化钴等。
本文综述了钴基催化剂用于催化NaBH4水解的研究进展,主要包括NaBH4水解原理、实验室测定NaBH4水解制氢常用装置、钴基催化剂制备方法、钴基催化剂分类及钴基催化剂用于催化NaBH4水解的影响因素;重点介绍了钴基-载体型催化剂催化NaBH4水解制氢的研究进展,提出了目前钴基催化剂发展面临的问题并对未来钴基催化剂研究的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐欢
于佳蕊
曹中秋
王艳
张轲
关键词:  NaBH4  钴基催化剂  制氢  催化活性    
Abstract: Hydrogen is the cleanest fuel because it does not produce any toxic by-products to the environment and has a high energy density of 120 kJ/g, more than three times higer than that of oil. It is an ideal alternative energy carrier for fuel cell and has broad prospects for development and application in the near future.
As a hydrogen storage medium, NaBH4 contains hydrogen with a mass fraction of 10.7%, which is much higher than other chemicals, and its solution can be stored for a long time. In the presence of a catalyst, the rate of hydrogen release can be controlled. Although precious metal catalysts have high activity and stability, the researchers focused on non-precious metal catalysts due to limited resources and high costs. Cobalt-based catalysts have broad commercial application prospects due to their high activity, lower cost than precious metals and more abundant reserves. However, one of the weaknesses of cobalt is the passivation and deactivation of borate due to its strong adsorption. The electronic structure of cobalt can be modified by alloying in order to reduce cobalt adsorption.
Cobalt-based catalysts are mainly divided into supported catalysts and unsupported catalysts. The surface area of unsupported cobalt-based catalysts is usually small, and it is easy to agglomerate in the exothermic hydrolysis reaction, resulting in reduced catalytic performance and ser-vice life. Therefore, the cobalt-based active ingredients are usually carried on the carrier. Due to the strong interaction between the metal cobalt and the catalyst carrier, and the synergistic effect with other elements, the cobalt-based catalyst exhibits a higher performance in the process of hydrogen production by the hydrolysis of sodium borohydride. In addition, adding dopants such as B or P, and alloying with other transition metals (Ni, Fe, Cu, Mo, Zn, W, Cr, etc.) or rare earth metals (Ce, Pr, La, etc.) can also improve its catalytic performance. There are many kinds of cobalt-based catalysts, including cobalt nanoparticles, metallic cobalt, cobalt salts, and cobalt oxides.
This paper reviews the research progress of cobalt-based catalysts used to catalyze the hydrolysis of NaBH4 including the hydrolysis principle of NaBH4, the classification of cobalt-based catalysts and the influencing factors of cobalt-based catalysts used to catalyze the hydrolysis of NaBH4. It focuses on the research progress of cobalt-based supported catalysts, and puts forward the current problems in the development of cobalt-based catalysts and prospects for the future development of cobalt based catalysts.
Key words:  sodium borohydride    Co-based catalysts    hydrogen generation    catalytic activity
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  O643  
基金资助: 国家自然科学基金(51271127;22075186);辽宁省重点研发计划项目(2018304025); 辽宁省教育厅科研项目(LJC201911)
通讯作者:  caozhongqiu6508@sina.com   
作者简介:  徐欢,2018年6月毕业于沈阳师范大学,获得理学学士学位。现为沈阳师范大学化学化工学院应用化学专业硕士研究生,目前主要研究领域为钴基催化剂用于储氢材料催化制氢。
曹中秋,沈阳师范大学,教授,硕士研究生导师。2001年毕业于中国科学院金属研究所,获材料科学与工程博士学位,同年加入沈阳师范大学工作至今。主要从事特种材料的制备及性能的研究工作。在国内外重要期刊发表学术论文100多篇,获批国家发明专利8项。
引用本文:    
徐欢, 于佳蕊, 曹中秋, 王艳, 张轲. 钴基催化剂催化NaBH4制氢研究进展[J]. 材料导报, 2022, 36(5): 20090051-11.
XU Huan, YU Jiarui, CAO Zhongqiu, WANG Yan, ZHANG Ke. Hydrogen Generation from Sodium Borohydride by Co-based Catalysts: a Review. Materials Reports, 2022, 36(5): 20090051-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090051  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20090051
1 Yang L, Wang K, Du G, et al. Nanotechnology, 2016, 27(47), 475702.
2 Hashimi A S, Nohan M, Chin S X. et al. Nanomaterials (Basel, Swit-zerland), 2020, 10(6), 1153.
3 Tignol P, Demirci U B. International Journal of Hydrogen Energy, 2019, 44(27), 14207.
4 Shaeel A, Zaheer K, Maqsood A, et al. International Journal of Hydrogen Energy, 2019, 44 (31), 16452.
5 Hao S, Yang L, Cui L, et al. Nanotechnology, 2016, 27(46), 4603.
6 Bakhtyari A, Makarem M A, Rahimpour M R. Fuel Cells and Hydrogen Production, Springer press, US, 2019, pp.947.
7 Hosseini M G, Mahmoodi R. Journal of Colloid and Interface Science, 2017, 500, 264.
8 Luo C, Fu F Y, Yang X J, et al. ChemCatChem, 2019, 11(6), 1643.
9 Cui L, Sun X, Xu Y, et al. Journal of Chemistry, 2016, 22(42), 14831.
10 Demirc S, Yildiz M, Inger E, et al. Renewable Energy,2020,147(1),69.
11 Kaya M. International Journal of Hydrogen Energy,2020,45(23),12743.
12 Ghodke N P, Rayaprol S, Bhoraskar S V, et al. International Journal of Hydrogen Energy, 2018, 202, 669.
13 Ozay H, Ilgin P, Ozay O. International Journal of Hydrogen Energy, 2020, 45(35), 17613.
14 Feng Y F, Zhu Y M, Li Y Z, et al. International Journal of Hydrogen Energy, 2020, 45(35), 17444.
15 Chen W, Fu W, Qian G, et al. Science, 2020, 23(3), 100922.
16 Ma J H, Wu S B, Liu Y, et al. Journal of Tianjin Polytechnic University, 2016, 35 (2), 45.
17 Zhang M, Liu L, Lu S, et al. Chemistry Select, 2019, 4 (35), 10494.
18 Du X Q, Liu C, Du C, et al. Nano Research, 2017, 10(8), 2856.
19 Rezaei M, Chermahini A N. International Journal of Hydrogen Energy, 2020, 45(41), 20993.
20 Sofue Y, Nomura K, Inagaki A. Chem Commun (Camb), 2020, 56(33), 4519.
21 Luo Y, Yang Q, Nie W, et al. ACS Applied Material Interfaces, 2020, 12(7), 8082.
22 Baytar O. Acta Chimica Slovenica, 2018, 65(2), 407.
23 Park D, Kim T. Journal of Nanosci Nanotechnol, 2016, 16(2), 1740.
24 Xu J N, Du X X, Wei Q L, et al. Chemistry Select, 2020, 5(22), 6526.
25 Xu D Y, Zhao L, Dai P. Journal of Natural Gas Chemistry, 2012, 21(5), 488.
26 Minkina V, Kalinin V, Shabunya S. Theoretical Foundations of Chemical Engineering, 2016, 50(4), 536.
27 Song, C, Zhang, D, Wang B. et al. Nano Research, 2016, 9, 3322.
28 Feng Y, Bin D, Yan B, et al. Journal of Colloid and Interface Science, 2017, 493, 190.
29 Filiz B C, Figen A K. International Journal of Hydrogen Energy, 2019, 44 (20), 9883.
30 Simoes M, Baranton S, Coutanceau C. Journal of Physical Chemistry, 2016, 113(30), 13369.
31 Boran A, Erkan S, Ozkar S, et al. International Journal of Energy Research, 2013, 37(5), 443.
32 Zhu J, Li R, Niu W L. Journal of Power Sources , 2012, 211, 33.
33 Bekirogullari M, Kaya M, Saka C. International Journal of Hydrogen Energy, 2019, 44(14), 7262.
34 Walter J C, Zurawski A, Montgomery D, et al. Journal of Power Sources, 2008, 179, 335.
35 Kojima Y, Suzuki K, Fukumoto K, et al. International Journal of Hydrogen Energy, 2002, 27(10), 1029.
36 Liang Y, Wang P, Dai H B. Journal of Alloys and Compounds, 2010, 491, 359.
37 Deonikar V G, Rathod P V, Pornea A M, et al. Journal of Industrial and Engineering Chemistry, 2020, 86, 167.
38 Ke D, Tao Y, Li Y, et al. International Journal of Hydrogen Energy, 2015, 40(23), 7308.
39 Didehban A, Zabihi M, Shahrouzi J R. International Journal of Hydrogen Energy, 2018, 43(45), 20645.
40 Guo Y, Dong Z, Cui Z, et al. International Journal of Hydrogen Energy, 2012, 37(2), 1577.
41 Wang Y, Shen Y, Cao Z Q, et al. Renewable Energy, 2016, 89, 285.
42 Aydin M, Hasimoglu A, Ozdemir O. International Journal of Hydrogen Energy, 2016, 41(1), 239.20090051-20090051-
43 Kibar M E, Engintepe E. International Journal of Chemical Kinetics, 2018, 50(12), 837.
44 Paladini M, Arzac G M, et al. Applied Catalysis B: Environmental, 2017, 210, 342.
45 Didehban A, Zabihi M, Babajani N. Polyhedron, 2020, 180, 114405.
46 Wang W Y, Yang Y Q, Luo H A, et al. Catalysis Communications, 2010, 11(9), 803.
47 Zhang X Y, Sun X W, Xu D Y, et al. Applied Surface Science, 2019, 469, 764.
48 Panel M, Paladini G M, Arzac V, et al. Applied Catalysis B: Environmental, 2017, 210, 342.
49 Virendrakumar P G, Deonikara H. Journal of Industrial and Engineering Chemistry, 2020, 86, 167.
50 Makiabadi M, Tayebeh S, Mostafavi A. International Journal of Hydrogen Energy, 2020, 45(3), 1706.
51 Zhang J, Zhang D, Cui C, et al. Dalton Transactions, 2019, 48(35), 13248.
52 Joydev M, Binayak R, Pratibha S. Applied Mechanics and Materials, 2014, 490-491(6), 213.
53 Liu B H, Li Z P, Suda S. Journal of Alloys and Compounds, 2006, 415(1-2), 288.
54 Ye W, Zhang H, Xu D, et al. Journal of Power Sources, 2007, 164(3), 544.
55 Lee J, Yong K, Ryul C, et al. Catalysis Today, 2007, 120(2), 305.
56 Xu D, Dai P, Liu B, et al. Journal of Power Sources, 2008, 182, 616.
57 Rakap M. Applied Catalysis B: Environmental, 2009, 91(6), 21.
58 Zhang H M, Feng X L, Cheng L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 112.
59 Özdemir E. International Journal of Hydrogen Energy, 2015, 40(40), 14045.
60 Sonia E, Demirci U B, Silva T M, et al. International Journal of Hydrogen Energy, 2016, 41(20), 8438.
61 Zhou C C, Hsieh C H, Chen B H, et al. Energy, 2015, 90 (2), 1973.
62 Aydin M, Hasimoglu A, Ozdemir O. International Journal of Hydrogen Energy, 2016, 41(1), 239.
63 Wang Y, Wang D, Zhao C, et al. International Journal of Hydrogen Energy, 2019, 44(21), 10508.
64 Gupta S, Patel N, Fernandes R, et al. International Journal of Hydrogen Energy, 2013, 38(34), 14685.
65 Patel N, Fernandes R, Miotell A. et al. Journal of Power Sources, 2009, 188(2), 411.
66 Chang J, Tian H J, Du F L. International Journal of Hydrogen Energy, 2014, 39(25), 13087.
67 Wei L, Ma M, Lu Y, et al. Functional Materials Letters, 2017, 10(5), 1750065.
68 Zou, Y J, Yin Y, Gao Y B. International journal of Hydrogen Energy, 2018, 43(10), 4912.
69 Ma J H, Su Y M, Liu Y. Journal of Tianjin University of Technology, 2020, 39(1), 31(in Chinese).
马敬环,苏彦铭,刘莹. 天津工业大学学报, 2020, 39(1), 31.
70 Loghmani M H, Shojaei A F. International Journal of Hydrogen Energy, 2013, 38(25), 10470.
71 Ozdemir E. International Journal of Hydrogen Energy, 2015, 40(40), 14045.
72 Li Y, Hou X W, Wang J, et al. International Journal of Hydrogen Energy, 2019, 44(55), 29075.
73 Chen H M, Liu R S, Chang S M, et al. International Journal of Hydrogen Energy, 2012, 37(4), 3338.
74 Wang W Y, Yang Y Q, Luo H A. Catalysis Communications, 2010, 11(9), 803.
75 Zou Y, Yin Y, Gao Y, et al. International Journal of Hydrogen Energy, 2018, 43(10), 4912.
76 Wei Y S, Huang X K, Wang J Y. International Journal of Hydrogen Energy, 2017, 42(41), 25860.
77 Arzac G M, Paladini M. Scientific Reports, 2018, 8(1), 1.
78 Daeil P, Taegyu K. Journal of Nanoscience and Nanotechnology, 2016, 16, 1740.
79 Wang L N, Li Z, Liu X, et al. International Journal of Hydrogn Energy, 2015, 40(25), 7965.
80 Rakap M, Kalua E, Özkar S. Journal of Alloy Compound, 2011, 509, 7016.
81 Xiang C L, Jiang D D, Zou Y J, et al. Hydrogen Energy, 2015, 40, 4111.
82 Hyeon K D, Seunghyun J, JunHwa K, et al. International Journal of Hydrogen Energy, 2019, 44(29), 15228.
83 Kahri H, Flaud V, Touati R, et al. RSC Advances, Royal Society of Chemistry, 2016, 6(104), 102498.
84 Gupta S, Patel N, Fernandes R, et al. Electrochimica Acta, 2017, 232, 64.
85 Zhao Y, Ning Z, Tian J, et al. Journal of Power Sources, 2012, 207(6), 120.
86 Fernandes R, Patel N, Miotello A, et al. Topics in Catalysis, 2012, 55(14-15), 1032.
87 Zabielaité A, Balcˇiūnaité A, Stalnioniené I, et al. International Journal of Hydrogen Energy, 2018, 43(52), 23310.
88 Sahiner N, Yasar A O. Fuel Process Technol, 2014, 125, 148.
89 Gang B G, Jung W, Kwon S. International Journal of Hydrogen Energy, 2015, 41(1), 524.
90 Bozkurt G, Ozer A, Yurtcan A B. Energy, 2019, 180(1), 702.
91 Raghava K R, Venkata C H, Nadagouda, M N. et al. Journal of Environmental Management, 2019, 238(2), 25.
92 Eugénio S, Demirci U B, Silva T M, et al. International Journal of Hydrogen Energy, 2016, 41(20), 8438.
93 Wang Y P, Wang Y J, Ren Q L, et al. Fuel Cells, 2010, 10(1),132.
94 Netskina O V, Ozerova A M, Komova O V, et al. Energies, 2019,12(7), 1.
95 Kaya M, Bekirogullari M. European Journal of Science and Technology, 2019, 16, 69.
96 Zhang J, Zhang D, Cui C, et al. Dalton Transactions, 2019, 48(35), 13248.
97 Lee J, Yong K, Ryul C, et al. Catalysis Today, 2007, 120(2), 305.
98 Joydev M, Binayak R, Pratibha S. Applied Mechanics and Materials, 2014, 490(6), 213.
99 Kim S J, Lee J, Kong K Y, et al. Power Sources, 2007,170, 412.
100 Kojima Y, Suzuki K, Fukumoto K, et al. Power Sources, 2004, 125, 22.
101 Marchionni A, Bevilacqua M, Filippi J, et al. Journal of Power Sources, 2015, 299(20), 391
[1] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[2] 郭亚杰, 李帆, 郭栋, 张春瑞, 卢尚智. Ni(SxSe1-x)2纳米线阵列催化电极的制备与析氢性能[J]. 材料导报, 2020, 34(16): 16011-16015.
[3] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[4] 李雅明, 李艳军, 张江, 丛野, 崔正威, 袁观明, 董志军, 邹涛, 李轩科. K3V5O14的合成及光催化性能和吸附性能[J]. 材料导报, 2019, 33(12): 1926-1931.
[5] 周嵬, 王习习, 朱印龙, 戴洁, 朱艳萍, 邵宗平. 面向金属-空气电池和中低温固体氧化物燃料电池应用的钴基电催化剂综述[J]. 材料导报, 2018, 32(3): 337-356.
[6] 夏艺萌, 吴帅, 谭丰, 李卫, 魏清茂, 闵春刚, 杨喜昆. 钴盐阴离子基团对Co-N-C催化剂电催化活性的影响[J]. 《材料导报》期刊社, 2018, 32(3): 362-367.
[7] 汪广进, 程凡, 徐甜, 余意, 文胜, 龚春丽, 刘海, 汪杰, 郑根稳, 潘牧. 二次烧结气氛对La0.7Sr0.3MnO3氧还原催化活性的影响*[J]. 《材料导报》期刊社, 2017, 31(2): 33-36.
[8] 桑琬璐, 李兰兰, 高若源, 王晨阳, 杨晓婧. 氨硼烷水解制氢催化剂载体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 27-33.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed