Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20090234-10    https://doi.org/10.11896/cldb.20090234
  无机非金属及其复合材料 |
室内反射裂缝试验方法研究进展
王威娜1,2, 周圣雄1, 秦煜1,3
1 重庆交通大学土木工程学院,重庆 400074
2 重庆交通大学交通土建工程材料国家地方联合工程实验室,重庆 400074
3 中铁二院重庆勘察设计研究院有限责任公司,重庆 400023
Research Progress of Indoor Reflective Crack Test Method
WANG Weina1,2, ZHOU Shengxiong1, QIN Yu1,3
1 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing 400074, China
3 CREEC (Chongqing) Survey, Design and Research Co. Ltd, Chongqing 400023, China
下载:  全 文 ( PDF ) ( 6460KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 旧路加铺沥青混凝土是实际工程常用的旧路修复方法,而反射裂缝是复合结构路面的主要病害类型。反射裂缝本身不会对路面造成严重损坏,但一旦形成并贯穿加铺层,水就会渗透至结构层内部,在交通荷载和温度变化的共同作用下破坏内部结构层,严重影响沥青路面的疲劳寿命。
为延缓反射裂缝的出现,延长复合式结构路面的疲劳寿命,各类防治反射裂缝的方法相继被提出,可分为改善沥青加铺层性能、设置中间阻裂夹层和旧路处理三类。科研工作者们设计了大量的室内反射裂缝试验,用以探究反射开裂机理和评估各类防反措施,得到的试验数据再反馈于路面抗裂设计。
实际道路中的反射开裂过程复杂,室内试验会不同程度地简化影响因素,影响反射开裂的因素主要有交通荷载和温度。依据影响因素将现有室内反射裂缝试验分为温度型、交通型和耦合作用型。温度型反射裂缝试验模拟温度变化引发的拉伸荷载;交通型反射裂缝试验模拟接裂缝上方的沥青加铺层在车轮荷载作用下承受的弯曲和剪切应力;耦合作用型反射裂缝试验会同时模拟交通荷载和温度应力,对接裂缝上方的沥青加铺层施加拉伸、剪切和弯曲荷载,贴近真实路面情况。
本文系统综述了国内外室内反射裂缝试验研究现状,归纳了温度型、交通型和耦合作用型三类室内反射裂缝试验方法,对各类室内反射裂缝试验的优缺点进行了评价,并指出了现有存在问题及未来的发展趋势,以期为后续制定标准化的反射裂缝试验方法提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王威娜
周圣雄
秦煜
关键词:  沥青混合料  反射裂缝  试验方法  加铺  荷载  耦合  水泥混凝土    
Abstract: Adding asphalt concrete layer on old roads is a common old road repair method in actual engineering, and reflective cracks are the main di-sease type of composite structure pavement. Reflective cracks will not cause serious damage to the pavement, but once formed and penetrated through the overlay, water will penetrate into the structure layer, destroy the internal structure layer under the combined action of traffic load and temperature changes, and seriously affect the fatigue life of the asphalt pavement.
In order to delay the occurrence of reflective cracks and prolong the fatigue life of composite structure pavements, various methods to prevent reflective cracks have been proposed one after another, which can be divided into three categories: improving the performance of asphalt overlays, interlayers and treating old roads. Researchers have designed a large number of indoor reflective crack tests to explore the mechanism of reflective cracking and evaluate various methods of preventing reflective cracks. The obtained test data are fed back to the pavement anti-cracking design.
The reflection cracking process in actual roads is complicated, and the indoor test will simplify the influencing factors. There are two main factors affecting reflection cracking, traffic load and temperature changes. According to influencing factors, the existing indoor reflection crack test is divided into temperature type, traffic type and coupling type. The temperature-type reflective crack test simulates the tensile load caused by temperature changes; the traffic-type reflective crack test simulates the bending and shear stress of the asphalt overlay above the crack under the action of wheel load; the coupling-action reflective crack test simulates simultaneously traffic load and temperature stress. Tensile, shear and bending loads are applied to the asphalt overlay above the joint crack, which is close to the real road conditions.
This paper systematically reviews the research status of indoor reflective crack tests at home and abroad, summarizes three types of indoor reflective crack test methods, namely temperature type, traffic type and coupling type, evaluates the advantages and disadvantages of various indoor reflective crack tests, and points out the current situation. There are problems and future development trends, hoping to provide a reference for the subsequent development of standardized reflective crack test methods.
Key words:  asphalt mixture    reflective cracking    test method    overlay    load    coupling    cement concrete
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  U416.216  
基金资助: 国家自然科学基金(52078091;51978114);重庆市自然科学基金(cstc2020jcyj-msxmX0624)
通讯作者:  qybridge@163.com   
作者简介:  王威娜,重庆交通大学副教授、硕士研究生导师。2006年7月本科毕业于长安大学公路学院,2014年7月在长安大学公路学院道路与铁道工程专业取得博士学位,期间获得公派联合培养博士研究生资格,在美国佐治亚理工学院开展学习与研究。主要从事道路材料与结构的研究工作,发表学术论文20余篇。
秦煜,2005年7月本科毕业于长安大学公路学院,2013年4月在长安大学公路学院桥梁与隧道工程专业取得博士学位。中铁二院重庆勘察设计研究院有限责任公司高级工程师、重庆交通大学硕士研究生导师。担任重庆市科学技术协会第五届委员会委员。主要从事桥梁与道路结构的研究工作。发表学术论文20余篇。
引用本文:    
王威娜, 周圣雄, 秦煜. 室内反射裂缝试验方法研究进展[J]. 材料导报, 2022, 36(5): 20090234-10.
WANG Weina, ZHOU Shengxiong, QIN Yu. Research Progress of Indoor Reflective Crack Test Method. Materials Reports, 2022, 36(5): 20090234-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090234  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20090234
1 Deilami S, White G. International Journal of Pavement Research and Technology, 2020,13(5),524.
2 Dhakal N, Elseifi M A, Zhang Z. International Journal of Pavement Research & Technology, 2016, 9(3),228.
3 Sun H. Prediction models for reflection cracking of asphalt ultra-thin overlay and experimental analysis. Master's Thesis, South China University of Technology, China,2014(in Chinese).
孙浩. 沥青超薄罩面反射裂缝预测模型及实验分析. 硕士学位论文, 华南理工大学, 2014.
4 Williams R C, Buss A, Chen C. Reflective crack mitigation guide for fle-xible pavements, Iowa State University, Institute of Transportation, USA, 2015.
5 Huang J, Chen S F, Li Z Z. Materials Reports A:Review Papers, 2013, 27(2),77(in Chinese).
黄今, 陈拴发, 李祖仲. 材料导报:综述篇, 2013,27(2),77.
6 Zhou Y M. A study on mechanism of reflective cracking and design met-hod of asphalt overlay paved on cement concrete pavements. Ph.D. Thesis, Tongji University, China, 2007(in Chinese).
周玉民. 水泥混凝土路面沥青加铺层反射裂缝机理与设计方法研究. 博士学位论文, 同济大学, 2007.
7 Sun C W. Study on the evolution law and mechanism of reflective cracks in cement concrete pavement overlays. Master's Thesis, Guizhou University, China, 2016(in Chinese).
孙长武. 水泥混凝土路面加铺层反射裂缝演化规律及机理研究. 硕士学位论文, 贵州大学, 2016.
8 Gonzalez-Torre I, Calzada-Perez M A, Vega-Zamanillo A,et al. Construction and Building Materials, 2015,75,368.
9 Ling J, Wei F, Gao J, et al. Transportation Research Record, 2019, 2673(6), 327.
10 Fu Q L, Wei J G, Wang L Y. Journal of Highway and Transport, 2020,33(8),133(in Chinese).
付其林, 魏建国, 王力扬. 中国公路学报, 2020,33(8),133.
11 Hamzah M O, Yee T S, Golchin B, et al. Construction and Building Materials, 2017, 132, 323.
12 Jiao Y, Fu L, Shan W, et al. Engineering Fracture Mechanics, 2019, 210, 147.
13 Safavizadeh S A, Kim Y. Journal of Materials in Civil Engineering, 2017, 29(6),04017011.
14 Elseifi M A, Alqadi I L. Road Materials and Pavement Design, 2004, 5(2), 169.
15 Nithin S, Rajagopal K, Veeraragavan A. Indian Geotechnical Journal, 2015, 45(4), 472.
16 Hu S, Zhou F, Scullion T, et al. Transportation Research Record, 2010, 2155(2155), 12.
17 Lytton R L. Geotextiles and Geomembranes, 1989, 8(3), 217.
18 Millien A, Dragomir M L, Wendling L, et al. In: 7th RILEM International Conference on Cracking in Pavements. Springer, Dordrecht, 2012, pp.1209.
19 Mushota C, Mwale M C, Mutembo G, et al. Geo-hubei International Conference on Sustainable Civil Infrastructure. Yichang, China, 2014, pp.62.
20 Yin H. Road Materials & Pavement Design, 2015, 16(1), 119.
21 Germann F P, Lytton R L. Methodology for predicting the reflection crac-king life of asphalt concrete overlays, Texas A&M Transportation Institute, USA, 1979.
22 Zhou F, Scullion T. Overlay tester: A rapid performance related crack resistance test. Texas Transportation Institute, Texas A & M University System, USA, 2005.
23 Zhou F, Hu S, Scullion T, et al. Journal of the Association of Asphalt Paving Technologists, 2007, 76, 627.
24 Yan K Z, Wang S Q, Tian S,et al. Journal of Hunan University (Natural Sciences), 2020, 47(1), 108(in Chinese).
颜可珍, 王绍全, 田珊, 等. 湖南大学学报(自然科学版), 2020, 47(1),108.
25 Zhai R X, Chen Y M, Yu Q H, et al. Journal of Functional Materials, 2017(9),9129(in Chinese).
翟瑞鑫, 陈永满, 余清华, 等. 功能材料, 2017(9),9129.
26 Jaskuła P, Szydłowski C, Stienss M. IOP Conference Series: Materials Science and Engineering. 2018, 356, 1.
27 Zhou S W, Zhang R, Zhang X H, et al. China Sciencepaper, 2018, 13(24), 2784(in Chinese).
周水文, 张蓉, 张晓华, 等. 中国科技论文, 2018, 13(24),2784.
28 Wei J, Shi J, Liang J. Journal of Materials in Civil Engineering, 2020, 32(5), 04020097.
29 Walubita L F, Faruk A N, Koohi Y, et al. The overlay tester (OT): comparison with other crack test methods and recommendation for surrogate crack tests,Texas A&M Transportation Institute (TTI), USA, 2013.
30 Garcia V M, Miramontes A. Transportation Research Record, 2015, 2507(2507), 10.
31 Huang W D, Zhong H B, Li B L. Journal of Building Materials, 2019, 22(1), 153(in Chinese).
黄卫东, 钟皓白, 李本亮. 建筑材料学报, 2019, 22(1), 153.
32 Zhou Z G, Hu S, Tao Y Q. Journal of China & Foreign Highway, 2014, 34(6), 42(in Chinese).
周志刚, 胡省, 陶佑强. 中外公路, 2014, 34(6), 42.
33 Kumar V V, Saride S. Construction & Building Materials,2018,162,37.
34 Zhou F, Im S, Sun L, et al. Road Materials and Pavement Design, 2017, 18,405.
35 Bennert T, Haas E, Wass E, et al. Transportation Research Record, 2018, 2672(28), 394.
36 Liu J. Investigation on the fatiguelife of asphalt pavement bottom-up cracking using overlay tester. Master's Thesis, Wuhan Institute of Technology, China, 2017(in Chinese).
刘俊. 基于OT试验的沥青路面bottom-up张开型裂缝疲劳寿命的研究. 硕士学位论文, 武汉工程大学, 2017.
37 Li W H. Experimental research on composite pavement using geotextiles to reduce reflection cracking caused by loads. Master's Thesis, Chongqing Jiaotong University, China, 2013(in Chinese).
李文辉. 应用土工织物防治复合式路面荷载型反射裂缝的试验研究. 硕士学位论文, 重庆交通大学, 2013.
38 Zhou G, Li R K, Wang H M,et al. China Journal of Highway and Transport, 2016, 29(2), 16(in Chinese).
周刚, 李汝凯, 王火明, 等. 中国公路学报, 2016, 29(2), 16.
39 Ni F J, Yin Y M, Gao M S. Journal of Southeast University (Natural Science Edition), 2007, 37(1), 128(in Chinese).
倪富健, 尹应梅, 高明生. 东南大学学报(自然科学版), 2007, 37(1), 128.
40 Liu L, Liu Z H, Li S. Highway, 2016, 61(3), 7(in Chinese).
柳力, 刘朝晖, 李盛. 公路, 2016, 61(3), 7.
41 Li R K, Liu M Q, Zhou G,et al. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(10), 51(in Chinese).
李汝凯, 刘秘强, 周刚, 等. 重庆交通大学学报(自然科学版), 2017, 36(10), 51.
42 Fallah S, Khodaii A. Materials and Structures, 2016, 49(5), 1705.
43 Shafabakhsh G, Asadi S. Journal of Rehabilitation in Civil Engineering, 2020, 8(1), 133.
44 Mao Q Y. Destruction mode and evaluation method of asphalt treated base layer on old cement concrete pavement based on discrete element. Master's Thesis, Harbin Institute of Technology, China,2019(in Chinese).
毛青洋. 基于DEM的旧水泥混凝土路面加铺ATB层破坏模式与评价方法. 硕士学位论文, 哈尔滨工业大学,2019.
45 Saride S, Kumar V V. Geotextiles and Geomembranes,2017,45(3),184.
46 Zhang H W, Hao P W, Tang C, et al. Journal of Building Materials, 2017(5), 89(in Chinese).
张海伟, 郝培文, 唐成, 等. 建筑材料学报, 2017(5), 89.
47 Chen G B, Li J Y. Journal of Chongqing University of Technology(Natural Science), 2020,34(12), 74(in Chinese).
陈古波,李建尧.重庆理工大学学报(自然科学),2020,34(12),74.
48 Sun Y, Yan T, Wu C, et al. Applied Sciences, 2018, 8(11),2093.
49 Liu Y Y, Ling T Q, Huang Z H. Journal of Chongqing Jiaotong Univer-sity (Natural Science), 2012,31(5), 966(in Chinese).
刘燕燕, 凌天清, 黄中文. 重庆交通大学学报(自然科学版), 2012,31(5), 966.
50 Zhang Q Q, Wu D F, He W, et al. Journal of Central South University (Science and Technology), 2016, 47(1), 136(in Chinese).
张倩倩, 吴德芬, 何文, 等. 中南大学学报(自然科学版), 2016, 47(1), 136.
51 Xu Y, Fan W, Cheng P, et al. International Journal of Pavement Engineering, 2019, 13,1.
52 Zhou F, Newcomb D, Gurganus C, et al. Experimental design for field validation of laboratory tests to assess cracking resistance of asphalt mixtures, Washington DC, US,2016.
53 Wang C H, Wang X C, Yang W G. Journal of Chang'an University (Natural Science Edition), 2008, 28(6), 16(in Chinese).
王朝辉, 王选仓, 杨维国. 长安大学学报(自然科学版), 2008, 28(6), 16.
54 Ling T Q, Li X L, Zhang J, et al. Journal of Chongqing Jiaotong University (Natural Science Edition), 2010, 29(4), 536(in Chinese).
凌天清, 李修磊, 张剑, 等. 重庆交通大学学报(自然科学版), 2010, 29(4), 536.
55 Zeng J, Xu T B, Kuang X D, et al. Technology of Highway and Transport, 2015(5),14(in Chinese).
曾杰, 徐田兵, 邝习东, 等. 公路交通技术,2015(5),14.
56 Ou Z Y, Gao G Q, Chen C L, et al. Highway, 2017, 62(12), 245(in Chinese).
欧震宇, 高冠群, 陈畅朗, 等. 公路, 2017, 62(12), 245.
57 Yu B, Lu Q, Yang J, et al. International Journal of Pavement Enginee-ring, 2013, 14(6), 553.
58 Ogundipe O M, Thom N H, Collop A, et al. Construction and Building Materials, 2013, 38,658.
59 Qian J S, Chen X R, Zheng Y, et al. Journal of Tongji University (Natural Science), 2018, 46(8), 1042(in Chinese).
钱劲松, 陈欣然, 郑毅, 等. 同济大学学报(自然科学版), 2018, 46(8), 1042.
60 Solaimanian M, Chehab G, Medeiros M. Evaluating resistance of hot mix asphalt overlays to reflective cracking using geocomposites and accelerated loading, The Roles of Accelerated Pavement Testing in Pavement Sustai-nability, Springer, Cham, 2016, pp. 407.
61 Correia N S, Zornberg J G. Geotextiles and Geomembranes, 2018, 46(1), 111.
62 Li S M, WuX H, Su Z X. Journal of Tongji University (Natural Science), 2015, 43(10), 1503(in Chinese).
李淑明, 吴小虎, 苏志翔. 同济大学学报(自然科学版), 2015, 43(10), 1503.
63 Gallego J, Prieto J N. Transportation Research Record, 2006, 1970(1), 215.
64 Zhou F J, Sun L J. China Civil Engineering Journal, 2001(3), 78(in Chinese).
周富杰, 孙立军. 土木工程学报, 2001(3), 78.
[1] 陆由付, 王朝辉, 王学成, 樊振通, 肖绪荡. 桥面现浇混凝土细微裂缝用环氧灌浆材料的环境适应性[J]. 材料导报, 2022, 36(1): 20090252-7.
[2] 陈飞, 张林艳, 封基良, 马永, 赵雁斌. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(z2): 127-137.
[3] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[4] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[5] 王民, 樊向阳, 王滔, 罗蓉, 胡德勇, 石晨光. 无损状态下钢桥面沥青铺装材料变形恢复特性[J]. 材料导报, 2021, 35(Z1): 269-273.
[6] 邵亚丽, 王喜明. 木材形状记忆效应与机理的研究进展[J]. 材料导报, 2021, 35(7): 7190-7198.
[7] 吴金荣, 崔善成, 李飞, 洪荣宝. 煤矸石粉/聚酯纤维沥青混合料低温抗裂性研究[J]. 材料导报, 2021, 35(6): 6078-6085.
[8] 殷丹丹, 常春清, 王岚, 焦子雄. 基于DIC技术分析老化前后温拌胶粉改性沥青混合料的开裂特性[J]. 材料导报, 2021, 35(24): 24088-24094.
[9] 周圣雄, 王威娜, 秦煜, 刘佳亮. 基于声发射特征参数的玻纤格栅复合梁阻裂机理表征[J]. 材料导报, 2021, 35(22): 22033-22038.
[10] 夏伟, 许金余, 聂良学, 王志航, 黄哲, 姚廒. 冲击荷载下纳米碳纤维混凝土的动态受压力学特性[J]. 材料导报, 2021, 35(22): 22063-22071.
[11] 喻宣瑞, 姚国文, 范伟庆. 交变荷载和氯盐环境作用下钢绞线的腐蚀疲劳性能研究[J]. 材料导报, 2021, 35(20): 20087-20091.
[12] 马昆林, 王中志, 龙广成, 谢友均, 曾晓辉. 动荷载-水-冻融共同作用下混凝土宏观裂缝扩展与演变的研究进展[J]. 材料导报, 2021, 35(19): 19091-19098.
[13] 任鑫, 窦春岳, 高志玉, 庄达, 齐鹏涛, 何维. 热处理数值模拟技术的研究进展[J]. 材料导报, 2021, 35(19): 19186-19194.
[14] 范世平, 朱洪洲. 细粒式沥青混合料断裂愈合预估模型[J]. 材料导报, 2021, 35(18): 18090-18095.
[15] 张承承. 复合材料开孔平板结构强度数值仿真及试验验证[J]. 材料导报, 2021, 35(18): 18190-18194.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed