Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20090275-6    https://doi.org/10.11896/cldb.20090275
  无机非金属及其复合材料 |
脱硫石膏灌芯墙脱水过程的仿真模拟与分析
曾子粤1,2, 杨建森1, 魏永起2
1 宁夏大学土木与水利工程学院,宁夏 银川 750021
2 同济大学材料科学与工程学院,上海 201804
The Simulation and Analysis of Dehydration Process of FGD Gypsum Grouted Wall
ZENG Ziyue1,2, YANG Jiansen1, WEI Yongqi2
1 School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, Ningxia, China
2 School of Material Science and Engineering, Tongji University, Shanghai 201804, China
下载:  全 文 ( PDF ) ( 3249KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作利用COMSOL软件自带的多孔介质流模块中的稀物质传递模型以及相关物质传递理论,模拟了多尺寸脱硫(FGD)石膏灌芯墙的物理脱水过程,并结合其脱水试验对仿真模拟结果进行了验证,通过调控模型参数研究了其脱水影响因素以及脱水过程中自由水的空间分布变化。结果表明,仿真模拟与试验所得结果一致性较好,在温度为20 ℃,55%、75%、82%三种相对湿度环境下,40 mm脱硫石膏的脱水时间分别约为350 h、450 h、500 h,相对湿度越低,脱硫石膏脱水时间越长且影响较大,但对最终质量损失率影响较小,最终质量损失率均为-21%左右;在相对湿度为75%,0 ℃、10 ℃、20 ℃三种温度环境下,40 mm脱硫石膏脱水时间分别约650 h、500 h、450 h,温度的升高会加快脱水速率、缩短脱水时间,但对其最终质量损失率几乎没有影响,始终保持在-21%左右;在温度为20 ℃、相对湿度为75%的环境下,40 mm、90 mm、140 mm厚度的脱硫石膏在450 h时的质量损失分别约为-21%、-10%、-5%,这说明厚度会明显延长脱硫石膏的脱水时间。脱硫石膏灌芯墙脱水过程以及自由水浓度变化是由外到内的,自由水浓度的变化产生浓度梯度带,浓度梯度带随着时间的推移由外至内移动且宽度逐渐变宽。当脱硫石膏完成脱水时,其内部自由水浓度均处于低水平,为0~0.2×104 mol/m3
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾子粤
杨建森
魏永起
关键词:  脱硫石膏灌芯墙  脱水  COMSOL  仿真模拟    
Abstract: In this work, the physical dehydration process of multi-scale flue gas desulfurization (FGD) gypsum core grouted wall was simulated by using the rare material transfer model in the porous media flow module with COMSOL software and relative theories of material transfer. The simulation was verified by the FGD gypsum core grouted wall dehydration test.The influencing factors of the dehydration of the FGD gypsum core grouted wall, the spatial distribution of free water, and other characteristics in the process of FGD gypsum dehydration were analyzed by controlling model parameters. The results showed that the simulation results were consistent with the experimental results. The dehydration time of 40 mm FGD gypsum under the three relative humidity conditions of 55%, 75% and 82% at 20℃ was about 350 h, 450 h and 500 h, respectively. The lower the relative humidity was, the longer the dehydration time of FGD gypsum was and the greater the influence on the final mass loss rate was, but the influence on the final mass loss rate was small, and the final mass loss rate was about -21%. When the relative humidity was 75%, the dehydration time of 40 mm FGD gypsum at 0 ℃, 10 ℃ and 20 ℃ was about 650 h, 500 h and 450 h, respectively. The rise of temperature accele-rates the dehydration rate and shortens the dehydration time, but it has almost no effect on the final mass loss rate, which always keeps at about -21%. When the temperature was 20 ℃ and the relative humidity was 75%, the mass loss rate of FGD gypsum of 40 mm, 90 mm and 140 mm thickness at 450 h was about -21%, -10% and -5%, respectively, indicating that the thickness significantly increased the dehydration time of FGD gypsum. FGD gypsum dehydration process and the change of concentration of free water filling and grouted wall was from outside to inside. The change of concentration of free water produced concentration gradient belt which moves from outside to inside over time with width gradually widening. When FGD gypsum dehydration was completed, the internal free water concentrations were low, which were 0—0.2×104 mol/m3.
Key words:  FGD gypsum cored grouted wall    dehydration    COMSOL    simulation
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TU526  
基金资助: 国家自然科学基金(51568056);宁夏高等学校一流学科建设项目(NXYLXK2021A03)
通讯作者:  yjs508@163.com   
作者简介:  曾子粤,硕士研究生,2018年7月本科毕业于东华理工大学。现就读于宁夏大学土木与水利工程学院结构工程专业,主要从事高性能结构工程材料研究。
杨建森,博士,教授,主要从事土木工程材料的教学和研究。1994年本科毕业于武汉工业大学,获工学学士;2005年硕士研究生毕业于同济大学,材料学专业,获工学硕士;2017年博士研究生毕业于同济大学,材料学专业,获工学博士。现为宁夏大学土木工程学科教授,硕士研究生导师,主要从事土木工程材料的教学和研究,发表学术论文60余篇。
引用本文:    
曾子粤, 杨建森, 魏永起. 脱硫石膏灌芯墙脱水过程的仿真模拟与分析[J]. 材料导报, 2022, 36(5): 20090275-6.
ZENG Ziyue, YANG Jiansen, WEI Yongqi. The Simulation and Analysis of Dehydration Process of FGD Gypsum Grouted Wall. Materials Reports, 2022, 36(5): 20090275-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090275  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20090275
1 Liu Y X, Zhang C M, Zhao J, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(8),2583.
刘云霄, 张春苗, 赵洁, 等. 硅酸盐通报, 2018, 37(8), 2583.
2 Yang L. Study on Preparation and properties of modified flue gas desulfurization building gypsum composite walling materials. Master’s Thesis, Shandong Jianzhu University, China, 2017(in Chinese).
杨磊.改性烟气脱硫建筑石膏复合墙材的研制及性能研究.硕士学位论文,山东建筑大学,2017.
3 Schuette H W, Hune R N. US patent, US3529357DA, 1970.
4 Chester R N, Alfred D. US patent, US4050885, 1977.
5 Feng X J, Li F. Drying Technology & Equipment, 2012, 10(4), 40.
冯小江, 李帆. 干燥技术与设备, 2012, 10(4), 40.
6 Ni H, Datta A K, Torrance K E. International Journal of Heat and Mass Transfer. 1999, 42(8), 1501.
7 Başağaoğlu H, Meakin P, Succi S, et al. EPL (Europhysics Letters), 2006, 73(6), 858.
8 Kao P H, Ren T F, Yang R J. International Journal of Heat and Mass Transfer, 2007, 50(21-22), 4243.
9 Huber C, Chopard B, Manga M. Journal of Computational Physics, 2010, 229(20), 7956.
10 Han W. Simulation of curing drying temperature of gypsum wallboard and study of influencing factors based on ANSYS. Master’s Thesis, Zhongnan University, China, 2007(in Chinese).
韩玮.基于ANSYS石膏墙板养护干燥温度仿真及影响因素研究.硕士学位论文,中南大学,2007.
11 Mo J S, Yang Y Y, Sheng H Q, et al. Chinese Journal of Environmental Engineering, 2013, 7(11), 4440.
莫建松, 杨有余, 盛海强, 等. 环境工程学报, 2013, 7(11), 4440.
12 Ding Y, Wei Y Q, Wang Z P, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(5), 1491.
丁杨, 魏永起, 王中平, 等. 硅酸盐通报, 2019, 38(5), 1491.
13 Ding Y, Wei Y Q, Zhou S X. New Building Materials, 2017, 44(6), 70.
丁杨, 魏永起, 周双喜. 新型建筑材料, 2017, 44(6), 70.
14 Lentzou D, Boudouvis A G, Karathanos V T, et al. Journal of Food Engineering, 2019, 263, 299.
15 Defraeye T, Verboven P. Journal of Food Engineering, 2017, 193, 95.
16 Purlis E. Journal of Food Engineering, 2019, 263,132.
17 Liu Q, Suo L M. System Simulation Technology, 2019, 15(3),184.
柳崎, 索丽敏. 系统仿真技术, 2019, 15(3), 184.
18 Zhou F, Liu Q Y, Wang C G, et al. Acta Energiae Solaris Sinica, 2019, 40(6),1677.
周峰, 刘琪英, 王晨光, 等. 太阳能学报, 2019, 40(6),1677.
19 Liu Y, Huang T. Journal of Hubei University of Technology, 2018, 33(4), 113.
刘洋, 黄涛. 湖北工业大学学报, 2018, 33(4),113.
20 China National Bureau of Statistics. China statistical yearbook, China Statistics Press, 2020(in Chinese).
中华人民共和国统计局. 中国统计年鉴, 中国统计出版社, 2020.
21 Lu Y Q. Study on the characteristics of coupled heat air and moisture transfer in building walls in cold aera. Master’s Thesis, China University of Mining and Technology, China, 2020(in Chinese).
卢阳巧.寒冷地区建筑墙体热湿及空气渗透耦合传递特性研究.硕士学位论文,中国矿业大学,2020.
22 Zhu G H, Gao X G, Li K, et al. Journal of Central South University (Science and Technology), 2010, 41(5), 1828.
朱桂华, 高旭光, 李抗, 等. 中南大学学报(自然科学版), 2010, 41(5), 1828.
23 Liu G P. Friend of Science Amateurs, 2013(11),97(in Chinese).
刘贵平. 科学之友, 2013(11), 97.
24 Datta A K. Journal of Food Engineering, 2007, 80(1), 96.
25 Datta A K. Journal of Food Engineering, 2007, 80(1), 80.
26 Halder A, Dhall A, Datta A K. Journal of Heat Transfer, 2011, 133(3),031010.
[1] 翟蔚然, 徐宝强, 陈思峰, 吴鉴, 甄甜甜, 杨斌. 不同气氛下偏钛酸脱水行为动力学研究[J]. 材料导报, 2021, 35(20): 20016-20021.
[2] 钟远, 王敏, 袁俊生. 热分析法研究六水硝酸镁的脱水过程与机理[J]. 材料导报, 2020, 34(22): 22015-22019.
[3] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed