Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 20110130-9    https://doi.org/10.11896/cldb.20110130
  高分子与聚合物基复合材料 |
机织复合材料渐进损伤的可视化方法
李京菁1,*, 侯赤2
1 中国商飞上海飞机设计研究院,上海 201210
2 西北工业大学航空学院,西安 710072
The Visualization Method of Progressive Damage of Woven Composites
LI Jingjing1,*, HOU Chi2
1 COMAC Shanghai Aircraft Design and Research Institute, Shanghai 201210, China
2 School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 12720KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作建立了机织复合材料渐进损伤可视化模型。该模型通过建立一种多积分点单元,将一定数量的积分点均匀地分布在机织复合材料单胞单元上,并通过区域划分子程序模块对这些积分点的属性进行划分,其中的任意一个积分点都能表征其对应位置厚度方向上的所有几何及材料特征,并利用这些积分点计算、记录、显示机织复合材料不同区域的应力状态、应变状态以及材料的失效状态,获得机织复合材料中各组分的失效顺序及失效模式。同时,复合材料渐进损伤可视化模型建立了ASCII存取方法,利用这一存取方法可对单元上所有积分点的失效状态进行存取,极大降低了模型对计算机存储能力的要求,提高了计算效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李京菁
侯赤
关键词:  机织  编织  复合材料  渐进损伤  可视化方法  ASCII存取方法    
Abstract: This work elaborates an visible progressive damage model of the woven composites. This model creates a multi-integral-point unit element, on which the integral points are arranged evenly across the unit cell element. These integral points are divided by region division sub-model, and any of these points can represent the whole properties of the geometry and material across the thickness at the position it belongs. The visible progressive damage model can calculate, record and present the regional stress, strain and damage mode of the woven composites, and obtain the sequence and damage mode of the components. The article also creates an ASCII storage method to access the damage mode of these integral points in each step, which can reduce the requirement of the computing and storage ability of the computer.
Key words:  woven    braid    composite    progressive damage    visible method    ASCII access method
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TB332  
基金资助: 陕西省重点研发计划(2020GY-280)
通讯作者:  * lijingjing1@comac.cc   
作者简介:  李京菁,2015年毕业于西北工业大学,获得工学博士学位。于2011年至2013年在美国阿克伦大学联合培养学习,现任中国商飞上海飞机设计研究院强度工程师。主要从事复合材料力学及鸟撞仿真模拟方法的研究。
引用本文:    
李京菁, 侯赤. 机织复合材料渐进损伤的可视化方法[J]. 材料导报, 2022, 36(13): 20110130-9.
LI Jingjing, HOU Chi. The Visualization Method of Progressive Damage of Woven Composites. Materials Reports, 2022, 36(13): 20110130-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20110130  或          http://www.mater-rep.com/CN/Y2022/V36/I13/20110130
1 Wang W. Modeling of meso structure of 3D braided composites. Master's Thesis, South China University of Technology, China, 2013 (in Chinese).
王伟. 三维编织复合材料的细观建模. 硕士学位论文, 华南理工大学, 2013.
2 Wang B L. Investigation on the mechanical properties and size effect of three-dimensionial braided composites.Ph.D. Thesis, Harbin Institute of Technology, China, 2009 (in Chinese).
王宝来. 三维编织复合材料的力学性能和尺寸效应研究. 博士学位论文, 哈尔滨工业大学, 2009.
3 Li M, Chen X H, Wang H. Acta Materiae Compositae Sinica, 2012, 29(6), 197(in Chinese).
李明, 陈秀华, 汪海. 复合材料学报, 2012, 29(6),197.
4 Luo J. Progressive damage and failure of woven composites based muti-scale macro-meso modelling method. Master's Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
罗嘉. 基于宏-细观多尺度建模的机织复合材料渐进损伤和失效分析. 硕士学位论文, 哈尔滨工业大学, 2017.
5 Lu Z X, Zhou Y, Feng Z H, et al. Acta Materiae Compositae Sinica, 2015, 32(1),150(in Chinese).
卢子兴, 周原, 冯志海, 等. 复合材料学报, 2015, 32(1),150.
6 Lu Z X, Zhou Y, Chen M Y, et al. Journal of Textile Research, 2014, 35(5),40(in Chinese).
卢子兴, 周原, 陈明阳, 等. 纺织学报, 2014, 35(5), 40.
7 Xu K, Xu X W. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(3), 398(in Chinese).
徐焜, 许希武. 力学学报, 2007, 23(3), 398.
8 Xu K, Xu X W. Chinese Journal of Solid Mechanics, 2010(2),133 (in Chinese).
徐焜, 许希武. 固体力学学报, 2010(2),133.
9 Han X J, Sun H Y. Chinese Journal of Computational Mechanics, 2012(5),148 (in Chinese).
韩小进, 孙慧玉. 计算力学学报, 2012(5),148.
10 Yao J C. Progressive damage analysis and experimental study of 2D woven composites. Master's Thesis, Yanshan University, China, 2019 (in Chinese)
姚冀川. 二维机织复合材料渐进损伤分析与试验研究. 硕士学位论文, 燕山大学, 2019.
11 Zhang S, Wang D, Li Z N, et al. Acta Materiae Compositae Sinica, 2006, 23(3),135 (in Chinese).
张爽, 王栋, 郦正能, 等. 复合材料学报, 2006, 23(3),135.
12 Tan H C, Xu S Y, Huang X, et al. Acta Materiae Compositae Sinica, 2018, 35(5),113 (in Chinese).
谭焕成, 许善迎, 黄雄, 等. 复合材料学报, 2018, 35(5),113.
13 Li J J, Zhao M Y, Gao X S, et al. Journal of Composite Materials, 2013, 48(6), 735.
14 David W S. Progressive failure analysis methodology for laminated compo-site structures, NASA, USA, 1999.
15 Hahn H T, Tsai S W. Journal of Composite Materials, 1974, 8(3), 288.
16 Petit P H, Waddoups M E. Journal of Composite Materials, 1969, 3(1), 2.
17 Chang Fu-Kuo, Chang Kuo-Yen. Journal of Composite Materials, 1987, 21(9), 834.
18 Reddy Y S, Reddy J N. Journal of Composites Technology and Research, 1993, 15(2), 73.
19 Ramesh Talreja, Chandra Veer Singh. Damage and failure of composite materials, Cambridge University Press, UK, 2012.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[4] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[5] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[6] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[7] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[8] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[9] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[10] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[11] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[12] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[13] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[14] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[15] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed