Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21030231-12    https://doi.org/10.11896/cldb.21030231
  金属与金属基复合材料 |
镧系金属有机框架化合物在发光传感检测领域的研究进展
刘维赛1,2,3, 陈晓怡1,2,3, 智文科1,2,3, 王旭泉1,2,3, 王飞1,2,3,*
1 云南省有色金属真空冶金重点实验室,昆明 650093
2 昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室,昆明 650093
3 昆明理工大学真空冶金国家工程研究中心,昆明 650093
Research Progress of Lanthanide Metal-Organic Frameworks in the Field of Luminescence Sensing and Detection
LIU Weisai1,2,3, CHEN Xiaoyi1,2,3, ZHI Wenke1,2,3, WANG Xuquan1,2,3, WANG Fei1,2,3,*
1 Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming 650093, China
2 State Key Laboratory of Complex Nonferrous Metal Resources Clear Utilization, Kunming University of Science and Technology, Kunming 650093, China
3 National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 23348KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镧系金属有机框架化合物(Ln-MOFs)材料是由镧系金属离子和有机配体通过配位键桥联形成的多孔晶态材料,是近年快速发展的一种新型功能性检测材料。Ln-MOFs具有比表面积大、孔道尺寸可调和结构可控等优势,在构建高选择性和高灵敏度的发光传感器领域有着广阔的应用前景,成为当前大量研究人员关心和研究的热点。
镧系金属离子具有高配位数和高电荷,易与氧供给配体或氮供给配体相结合,除了La3+和Lu3+外,其他Ln3+未完全充满的4f电子层结构可产生f-f或f-d跃迁发射,利用离子与配体的协同效应可以合成结构多样、发光性能良好的Ln-MOFs材料。Ln-MOFs的永久孔穴可以容纳各种客体物质与框架产生相互作用,外界环境和客体物质的微扰会改变Ln-MOFs的发光波长或强度,产生肉眼可见的颜色变化,并且可以将有机配体设计为发光位点,从而达到更好的传感效果,Ln-MOFs优异的结构和光致发光性质为制作传感材料提供了非常重要的基础。
Ln-MOFs中最常见的检测形式是由外界环境因素和检测物引起的光诱导发射强度猝灭(Turn off)和增强(Turn on)。当检测物与Ln-MOFs发生能量竞争,通过配体与检测物之间的相互作用改变能量传递过程,部分能量从配体转移到分析物,能量传递效率降低导致发射猝灭,而检测物增强Ln-MOFs的框架结构强度可有效提高能量传递效率和发光强度。
本文聚焦了Ln-MOFs在发光传感领域检测离子、pH、有机小分子、硝基芳香族化合物、气体和温度的研究工作,着重介绍了该领域近期的研究进展,并对Ln-MOFs配体的选择与设计、灵敏性、重复利用性能和复杂环境的适用性进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘维赛
陈晓怡
智文科
王旭泉
王飞
关键词:  镧系金属有机框架化合物  发光检测  化学传感  温度    
Abstract: Lanthanide metal-organic frameworks (Ln-MOFs) are porous crystalline materials composed of lanthanide metal ions and organic ligands by coordination bonding interactions. They are a novel group of functional sensing materials that have been increasingly developed in recent years. Ln-MOFs possess advantages in constructing luminescent sensors with high selectivity and sensitivity due to their excellent features such as high specific surface area, adjustable pore size, controllable structure and broad application prospects, which have been attracting the growing interests of numerous researchers.
Furthermore, high coordination and charge number of lanthanide metal ions make it accessible to combine with oxygen or nitrogen provided by the ligands. Except for La3+ and Lu3+, the incompletely filled 4f electron layer structures of other Ln3+ can produce f-f or f-d transition emissions. The synergistic effect of ionic centers and the ligands can be used for the synthesis of multiple Ln-MOFs with excellent luminescent performance and diverse structures. Permanent holes of Ln-MOFs can accommodate various guest substances interacting with the framework. The perturbation of the external environment and the presence of guest substances will change the light-emitting wavelength or intensity of Ln-MOFs, resulting in visible color changes to the naked eye. The ligands can be designed as light-emitting sites to promote a better sensing effect. The excellent structures and photoluminescence properties of Ln-MOFs provide an essential basis for the development of novel sensing materials.
The most common form of detection in Ln-MOFs is the light-induced emission quenching (turn off) and enhancement (turn on) caused by external environmental factors and detection substances. When the analyte and Ln-MOFs compete for energy, the energy transfer process is changed by interacting with ligand and analyte. Partial energy is transferred from the ligand to the analyte, which leads to the reduction of energy transfer efficiency and ultimately results in emission quenching. In case the analyte increases the rigidity of the framework structure, the efficiency of energy transfer and the luminescence intensity of Ln-MOFs will be effectively enhanced.
This paper focuses on recent research work and progress of Ln-MOFs on ions, pH, small organic molecules, nitroaromatic compounds, gas and temperature in luminescence sensing and detection. The selection and design of ligands, sensitivity, reusability and applicability in complex environments of Ln-MOFs have been prospected.
Key words:  lanthanide metal-organic frameworks    luminescence detection    chemical sensing    temperature
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TB34  
基金资助: 云南省基础研究计划项目-面上项目(202201AT070206);云南省万人计划青年拔尖人才专项(109720190004)
通讯作者:  *王飞,昆明理工大学冶金与能源工程学院教授、博士研究生导师,2003年毕业于华东理工大学无机非金属材料与工程专业,获学士学位,2006年于华东理工大学无机材料系获材料学硕士学位,2012年毕业于昆明理工大学,获工学博士学位,主要从事稀土发光材料和真空冶金等方面的研究,以第一作者/通讯作者发表SCI检索论文30余篇。feiwang@kust.edu.cn   
作者简介:  刘维赛,2019年6月毕业于昆明理工大学获工学学士学位。昆明理工大学冶金与能源工程学院硕士研究生,在王飞教授的指导下进行研究。目前主要研究领域为高纯稀土金属和有机框架化合物材料。
引用本文:    
刘维赛, 陈晓怡, 智文科, 王旭泉, 王飞. 镧系金属有机框架化合物在发光传感检测领域的研究进展[J]. 材料导报, 2023, 37(5): 21030231-12.
LIU Weisai, CHEN Xiaoyi, ZHI Wenke, WANG Xuquan, WANG Fei. Research Progress of Lanthanide Metal-Organic Frameworks in the Field of Luminescence Sensing and Detection. Materials Reports, 2023, 37(5): 21030231-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030231  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21030231
1 Alzamly A, Bakiro M, Ahmed S H, et al. Coordination Chemistry Reviews, 2020, 425, 213543.
2 Younis S A, Bhardwaj N, Bhardwaj S K, et al. Coordination Chemistry Reviews, 2020, 429, 213620.
3 Binnemans K. Chemical Reviews, 2009, 109(9), 4283.
4 Xu H, Cao C S, Kang X M, et al. Dalton Transactions, 2016, 45(45), 18003.
5 Li X J, Lu S, Tu D T, et al. Nanoscale, 2020, 12(28), 15021.
6 Zhao Y W, Zhang F Q, Zhang X M. ACS Applied Materials & Interfaces, 2016, 8(36), 24123.
7 Cui Y J, Chen B L, Qian G D. Coordination Chemistry Reviews, 2014, 273, 76.
8 Li B, Wen H M, Cui Y J, et al. Progress in Polymer Science, 2015, 48, 40.
9 Li H Y, Wei Y L, Dong X Y, et al. Chemistry of Materials, 2015, 27(4), 1327.
10 Cui Y J, Song R J, Yu J C, et al. Advanced Materials, 2015, 27(8), 1420.
11 Mahmoud M E, Moussa Z, Prakasam T, et al. Journal of Solid State Chemistry, 2020, 281, 121031.
12 Hao J N, Yan B. New Journal of Chemistry, 2016, 40(5), 4654.
13 Nguyen H T D, Tran Y B N, Nguyen H N, et al. Inorganic Chemistry, 2018, 57(21), 13772.
14 Zhao J, Wang Y N, Dong W W, et al. Inorganic Chemistry, 2016, 55(7), 3265.
15 Sun Z, Hu P, Ma Y, et al. Dyes and Pigments, 2017, 143, 10.
16 Bai L P, Wang Y Y, Guo Y L, et al. Journal of Environmental Health, 2016, 78(6), 84.
17 Liu W S, Jiao T Q, Li Y Z, et al. Journal of the American Chemical Society, 2004, 126(8), 2280.
18 Jiao Y, Zhou L, He H Y, et al. Talanta, 2017, 162, 403.
19 Xia T F, Song T, Zhang G G, et al. Chemistry-A European Journal, 2016, 22(51), 18429.
20 Tian L M, Xue J, Yang Z Y. Tetrahedron Letters, 2018, 59(46), 4110.
21 Xu H, Fang M, Cao C S, et al. Inorganic Chemistry, 2016, 55(10), 4790.
22 Yang D X, Liu X C, Zhou Y Y, et al. Analytical Methods, 2017, 9(13), 1976.
23 Ji G F, Liu J J, Gao X C, et al. Journal of Materials Chemistry A, 2017, 5(21), 10200.
24 Liao W M, Wei M J, Mo J T, et al. Dalton Transactions, 2019, 48(14), 4489.
25 Hao J N, Yan B. Chemical Communications, 2015, 51(36), 7737.
26 Liu B, Wu W P, Hou L, et al. Chemical Communications, 2014, 50(63), 8731.
27 Yin X J, Li S X, Liao B L. Dyes and Pigments, 2020, 174, 108035.
28 Cui Z, Zhang X Y, Liu S, et al. Inorganic Chemistry, 2018, 57(18), 11463.
29 Zhao X D, Liu D H, Huang H L, et al. Microporous and Mesoporous Materials, 2014, 185, 72.
30 Chen B L, Wang L B, Zapata F, et al. Journal of the American Chemical Society, 2008, 130(21), 6718.
31 Shi P F, Hu H C, Zhang Z Y, et al. Chemical Communications, 2015, 51(19), 3985.
32 Du P Y, Gu W, Liu X. Dalton Transactions, 2016, 45(21), 8700.
33 Liu W, Wang Y L, Bai Z L, et al. ACS Applied Materials & Interfaces, 2017, 9(19), 16448.
34 Yu L, Wang C, Hu C J, et al. Journal of Solid State Chemistry, 2018, 262, 282.
35 Zhan Z Y, Liang X Y, Zhang X L, et al. Dalton Transactions, 2019, 48(5), 1786.
36 Hou Z H, Li P, Wang H Y, et al. Dyes and Pigments, 2017, 147, 429.
37 Xu H, Cao C S, Xue J Z, et al. Chemistry-A European Journal, 2018, 24(41), 10296.
38 Zhan Z Y, Jia Y J, Li D H, et al. Dalton Transactions, 2019, 48(40), 15255.
39 Xia T F, Zhu F L, Jiang K, et al. Dalton Transactions, 2017, 46(23), 7549.
40 Li Y J, Wang Y L, Liu Q Y. Inorganic Chemistry, 2017, 56(4), 2159.
41 Zhou J M, Li H H, Zhang H, et al. Advanced Materials, 2015, 27(44), 7072.
42 Wu S Y, Lin Y N, Liu J W, et al. Advanced Functional Materials, 2018, 28(17), 1707169.
43 Wang J J, Si P P, Yang J, et al. Polyhedron, 2019, 162, 255.
44 Xu Q W, Dong G Y, Cui R F, et al. CrystEngComm, 2020, 22(4), 740.
45 Liu X F, Zhang X Y, Li R F, et al. Dyes and Pigments, 2020, 178, 108347.
46 Nagarkar S S, Desai A V, Ghosh S K. CrystEngComm, 2016, 18(17), 2994.
47 Song X Z, Song S Y, Zhao S N, et al. Advanced Functional Materials, 2014, 24(26), 4034.
48 Zhang Y H, Li B, Ma H P, et al. Journal of Materials Chemistry C, 2017, 5(19), 4661.
49 Wang S Y, Shan L, Fan Y, et al. Journal of Solid State Chemistry, 2017, 245, 132.
50 Bogale R F, Chen Y Z, Ye J W, et al. Sensors and Actuators B: Chemical, 2017, 245, 171.
51 Zhang X J, Su F Z, Chen D M, et al. Dalton Transactions, 2019, 48(5), 1843.
52 Smith J A, Singh-Wilmot M A, Carter K P, et al. Crystal Growth & Design, 2019, 19(1), 305.
53 Zhang J, Yang W B, Wu X Y, et al. Dalton Transactions, 2015, 44(30), 13586.
54 Xu X Y, Yan B. Journal of Materials Chemistry C, 2016, 4(36), 8514.
55 Yang Y, Huang H P, Wang Y Z, et al. Dalton Transactions, 2018, 47(38), 13384.
56 Cui Y J, Xu H, Yue Y F, et al. Journal of the American Chemical Society, 2012, 134(9), 3979.
57 Lian X S, Zhao D, Cui Y J, et al. Chemical Communications, 2015, 51(100), 17676.
58 Wang D B, Tan Q H, Liu J J, et al. Dalton Transactions, 2016, 45(46), 18450.
59 Zhao D, Yue D, Zhang L, et al. Inorganic Chemistry, 2018, 57(20), 12596.
[1] 饶强海, 胡光煊, 张春媚, 杨鸿斌, 胡芳馨, 郭春显. 碳基材料构建电化学传感器实现苯二酚异构体的超敏精准检测:综述[J]. 材料导报, 2023, 37(5): 21080175-17.
[2] 李良, 赵修贤, 王彬彬, 杨帅军, 聂永, 蒋绪川. 热致变色过渡金属配合物的变色机理及应用[J]. 材料导报, 2023, 37(4): 21010049-11.
[3] 陈露, 朱琦, 孙旭东. 基于稀土层状氢氧化物的荧光材料研究进展[J]. 材料导报, 2023, 37(3): 22090241-10.
[4] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[5] 李孝晨, 丁文艺, 朱霄汉, 郑明杰. 基于机器学习的RAFM钢中子辐照脆化预测模型研究[J]. 材料导报, 2023, 37(1): 22010142-7.
[6] 王以霖, 谭毅, 崔传勇, 游小刚, 赵龙海, 崔弘阳, 李鹏廷, 李晓娜. 电子束熔炼新型Ni-Co基高温合金过程中合金元素的挥发行为及熔池温度计算[J]. 材料导报, 2023, 37(1): 21080061-6.
[7] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[8] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[9] 陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
[10] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[11] 尹道道, 王海, 张珍杰, 向飞, 王海龙, 纪宪坤. 室外环境下不同尺寸混凝土中膨胀剂的应用效果研究[J]. 材料导报, 2022, 36(Z1): 21110148-4.
[12] 张朝, 黄太文, 蒲茜, 张家晨, 张军, 苏海军, 郭敏, 刘林. 流态床冷却定向凝固技术研究进展[J]. 材料导报, 2022, 36(7): 20090249-6.
[13] 鲁猷栾, 穆新伟, 黄乐舒, 石震, 郑寅. 生物质炭材料:构建电化学传感器的理想修饰材料[J]. 材料导报, 2022, 36(6): 20070278-8.
[14] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[15] 范利丹, 孙亮, 余永强, 张纪云, 郭佳奇. 偏高岭土提高水泥基注浆材料在高地温隧道工程中的适应性[J]. 材料导报, 2022, 36(6): 20100228-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed