Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21030214-12    https://doi.org/10.11896/cldb.21030214
  金属与金属基复合材料 |
金属网格柔性透明导电薄膜研究进展
黄兵1,2, 刘萍2,*
1 电子科技大学物理学院,成都 610054
2 电子科技大学中山学院电子信息学院,广东 中山 528402
Research Progress of Flexible Transparent Conductive Film Based on Metal Mesh
HUANG Bing1,2 , LIU Ping2,*
1 School of Physics,University of Electronic Science and Technology of China,Chengdu 610054, China
2 College of Electron and Information Engineering,University of Electronic Science and Technology of China Zhongshan Institute,Zhongshan 528402, Guangdong, China
下载:  全 文 ( PDF ) ( 39167KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着柔性电子器件的发展,柔性显示器、柔性太阳能电池、柔性传感器等产品已经逐步从实验室走向市场。柔性透明导电薄膜作为柔性光电器件不可或缺的重要组成部分,今后其需求量只会不断增加。目前的光电子器件逐渐向大尺寸、轻薄、柔性、可拉伸、低成本等方面发展。氧化铟锡(Indium tin oxide,ITO)是目前使用最广泛的透明导电薄膜,但ITO制备工艺复杂,具有脆性,且铟是稀有金属,储量少,价格昂贵。因此,研制可替代ITO的高性能柔性透明导电薄膜越来越迫切。目前已有研究人员研制出多种可替代ITO的柔性透明导电薄膜,其中基于金属网格的柔性透明导电薄膜是替代ITO的有力竞争者。
金属网格柔性透明导电薄膜展示了极好的光电性能和机械灵活性。它最吸引人的地方在于可以独立改变金属网格的线宽和间距,从而在调节薄膜方阻和透光率方面表现出更好的权衡性。目前,已有大量的研究人员研制出可与ITO媲美的金属网格柔性透明导电薄膜。多数研究者通过光刻技术制作出母版,再结合化学镀或电沉积技术进行导电薄膜制作。以光刻技术为基础制备的柔性透明导电薄膜性能良好,但光刻工艺复杂而且设备昂贵。还有研究人员通过其他技术进行研究,如印刷增材制造技术、静电纺丝技术、光子烧结、模板法等,制备的柔性透明导电薄膜性能良好。其中基于印刷增材制造技术制备的柔性透明导电薄膜已经在触摸屏领域实现产业化,有望进一步发展。
本文综述了金属网格柔性透明导电薄膜的研究进展及在光电器件中的应用,包括有机太阳能电池、有机发光二极管等,具体讨论了金属网格透明导电薄膜的基本特性、光电性能、制造技术和器件应用,并点明了其制备方法的优劣性,以期为后续的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄兵
刘萍
关键词:  金属网格  柔性透明导电薄膜  太阳能电池  有机发光二极管    
Abstract: Developments in flexible electronic devices have led to development of flexible displays, solar cells and sensors. Particularly, flexible transpa-rent conductive films (TCFs) form an indispensable part of flexible electronic devices and the demand for these conductive films will increase in the future. At present, scalable, lightweight, flexible, stretchable, and low-cost optoelectronic devices are desired. Indium tin oxide (ITO) is the most widely used TCFs. However, ITO is brittle in addition to requiring complication preparation process. More importantly, indium is a rare metal, which is scarce and expensive. Therefore, substitutes exhibiting high performance for use in flexible TCFs should be developed. Researchers have developed a variety of flexible TCFs that can replace ITO, and films based on metal mesh have demonstrated great potential.
These films have demonstrated excellent photoelectric properties and mechanical flexibility. The line width and spacing of the metal mesh can be changed independently, thus granting a better ability to adjust trade-off between square resistance and transmittance of the film. Many reports have detailed the development of metal mesh-based flexible TCFs with performances, which are comparable to ITO. Most of these reports prepare master plates by photolithography. Consequently, this preparation is combined with electroless plating or electrodeposition to make conductive films. Flexible TCFs prepared by photolithography have good performance. However, photolithography is complicated and expensive. Some reports have detailed the preparation of flexible TCFs using additive manufacturing, electrostatic spinning, photonic sintering, and template method. The flexible TCFs fabricated using additive manufacturing have been commercialized for touchscreen applications and are expected to be developed further.
In this paper, progress in preparation and optoelectronic device applications of metal mesh TCFs is reviewed. Specifically, the photoelectric properties, manufacturing technology, and device applications of metal mesh TCFs and the drawback of these preparation methods are discussed. This paper provides a reference for future research in the TCFs domain.
Key words:  metal mesh    flexible transparent conductive film    solar cell    organic light emitting diode
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  TB31  
基金资助: 广东省教育厅重点科研项目(2021ZDZX1052;2020KCXTD030);中山市科技计划项目(2022B2020)
通讯作者:  *刘萍,电子科技大学中山学院电子信息学院教授、硕士研究生导师,2002年毕业于三峡大学物理系,获物理学学士学位。2005年毕业于广西师范大学物理与信息工程学院,获物理学硕士学位。2008年6月毕业于上海交通大学物理系,获物理学博士学位。2013年11月进入电子科技大学物理电子学专业从事博士后研究。目前主要研究方向为光电材料与器件。主持国家自然科学基金2项、省级项目5项;在Scientific Reports、Nanoscale Research Letters、Journal of Materials Science、Chinese Physics B等国内外期刊上发表论文50余篇。liuping49@126.com   
作者简介:  黄兵,2019年6月毕业于海南师范大学,获得理学学士学位。现为电子科技大学物理学院硕士研究生,在刘萍教授的指导下进行研究。目前主要研究领域为铜网格透明导电薄膜的制备及在OLED中的应用。
引用本文:    
黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
HUANG Bing , LIU Ping. Research Progress of Flexible Transparent Conductive Film Based on Metal Mesh. Materials Reports, 2023, 37(5): 21030214-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030214  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21030214
1 Bädeker K. Annals of Physics, 1907, 22, 749.
2 Lee H B, Jin W Y, Ovhal M M, et al. Journal of Materials Chemistry C, 2019, 7(5), 1087.
3 Brutting W, Frischeisen J, Schmidt T D, et al. Physica Status Solidi A-Applications and Materials Science, 2013, 210(1), 44.
4 Yang K, Hu Z Q, Wang H Q, et al. Journal of Dalian Dalian Polytechnic University, 2014, 33(2), 135.
杨坤, 胡志强, 王海权, 等. 大连工业大学学报, 2014, 33(2), 135.
5 Kumar A, Zhou C W. ACS Nano, 2010, 4(1), 11.
6 Backes C, Abdelkader A M, Alonso C, et al. 2d Materials, 2020, 7(2), 282.
7 Zhu Z R, Geng W M, Zhu Q X, et al. Nanotechnology, 2021, 32(1), 13.
8 Wang Y X, Liu P, Zeng B Q, et al. Nanoscale Research Letters, 2018, 13, 10.
9 Wang Y X, Liu P, Wang H H, et al. Journal of Materials Science, 2019, 54(3), 2343.
10 Han S, Chae Y, Kim J Y, et al. Journal of Materials Chemistry C, 2018, 6(16), 4389.
11 Chang L, Zhang X Q, Ding Y, et al. ACS Applied Materials & Interfaces, 2018, 10(34), 29010.
12 Wang S, Tian Y H, Wang C X, et al. Composites Science and Technology, 2019, 174, 76.
13 Hwang Y, Choi J, Kim J W, et al. Scientific Reports, 2020, 10(1), 8.
14 Liu P, Wang J H, Cheng J, et al. Surface Review and Letters, 2020, 27(7), 7.
15 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666.
16 Bae S, Kim H, Lee Y, et al. Nature Nanotechnology, 2010, 5(8), 574.
17 Kobayashi T, Bando M, Kimura N, et al. Applied Physics Letters, 2013, 102(2), 4.
18 Iijima S. Nature, 1991, 354(6348), 56.
19 Bethune D S, Kiang C H, Devries M S, et al. Nature, 1993, 363(6430), 605.
20 Iijima S, Ichihashi T. Nature, 1993, 363(6430), 603.
21 Li X S, Wang Y M, Yin C R, et al. Journal of Materials Chemistry C, 2020, 8(3), 849.
22 Nguyen D T, Youn H. ACS Applied Materials & Interfaces, 2019, 11(45), 42469.
23 Lee J, Lee P, Lee H, et al. Nanoscale, 2012, 4(20), 6408.
24 Ding S, Jiu J T, Tian Y H, et al. Physical Chemistry Chemical Physics, 2015, 17(46), 31110.
25 Chiang C, Fincher C, Park Y, et al. Physical Review Letters, 1977, 39(17), 1098.
26 Xia Y J, Sun K, Ouyang J Y. Advanced Materials, 2012, 24(18), 2436.
27 Sun K, Zhang S P, Li P C, et al. Journal of Materials Science-Materials in Electronics, 2015, 26(7), 4438.
28 Zhang L, Yang K, Chen R, et al. Advanced Electronic Materials, 2020, 6(1), 8.
29 Wu F L, Li P C, Sun K A, et al. Advanced Electronic Materials, 2017, 3(7), 10.
30 Zhou L, Yu M J, Chen X L, et al. Advanced Functional Materials, 2018, 28(11), 7.
31 Keum C, Murawski C, Archer E, et al. Nature Communications, 2020, 11(1), 9.
32 Bai S C, Guo X Z, Chen T R, et al. Composites Part a-Applied Science and Manufacturing, 2020, 139, 8
33 Ji Y X, Yang J, Luo W, et al. ACS Applied Materials & Interfaces, 2018, 10(11), 9571.
34 Lee J Y, Connor S T, Cui Y, et al. Nano Letters, 2008, 8(2), 689.
35 Rogers J A, Someya T, Huang Y G. Science, 2010, 327(5973), 1603.
36 Kang M G, Guo L J. Advanced Materials, 2007, 19(10), 1391.
37 Lin K M, Shinde S. Journal of Materials Science-Materials in Electronics, 2021, 32(5), 5690.
38 Zhou H, Song Y. ACS Applied Materials & Interfaces, 2021, 13(3), 3493.
39 Singh S B, Hu Y B, Kshetri T, et al. Journal of Materials Chemistry C, 2017, 5(17), 4198.
40 Singh S B, Singh T I, Kim N H, et al. Journal of Materials Chemistry A, 2019, 7(17), 10672.
41 Song S, Cho S M. Korean Journal of Chemical Engineering, 2021, 38(8), 1720.
42 Chen X L, Wu X Z, Shao S S, et al. Scientific Reports, 2017, 7, 8.
43 Jung J, Cho H, Choi S H, et al. ACS Applied Materials & Interfaces, 2019, 11(17), 15773.
44 Gu W B, Cui Z. In: 6th Electronic System-Integration Technology Conference (ESTC). Grenoble, France, 2016.
45 Khan A, Lee S, Jang T, et al. Small, 2016, 12(22), 3021.
46 Li L J, Zhang B, Zou B H, et al. ACS Applied Materials & Interfaces, 2017, 9(45), 39110.
47 Qiu T F, Luo B, Akinoglu E M, et al. Advanced Functional Materials, 2020, 30(31), 8.
48 Zhou H Y, Mao H D, Meng X C, et al. Organic Electronics, 2019, 75, 8.
49 Yi F S, Bi Y G, Gao X M, et al. Organic Electronics, 2020, 87, 7
50 Zhang B, Lee H D, Byun D. Advanced Engineering Materials, 2020, 22(5), 8.
51 Ye T, Jun L, Kun L, et al. Organic Electronics, 2017, 41, 179.
52 Zhu X Y, Xu Q, Li H K, et al. Advanced Materials, 2019, 31(32), 9.
53 Meng X C, Xu Y F, Wang Q X, et al. Langmuir, 2019, 35(30), 9713.
54 Wang Z, Kang Y, Zhao S C, et al. Advanced Materials, 2020, 32(3), 15.
55 Cui Z, Gao Y L. SID Symposium Digest of Technical Papers, 2015, 46(1), 398.
56 Chen X L, Nie S H, Guo W R, et al. Advanced Electronic Materials, 2019, 5(5), 1800991.
57 Lee J H, Chung B, Park S, et al. Macromolecular Research, 2018, 26(2), 157.
58 Muzzillo C P, Reese M O, Mansfield L M. ACS Applied Materials & Interfaces, 2020, 12(23), 25895.
59 Yu S, Han H J, Kim J M, et al. ACS Nano, 2017, 11(4), 3506.
60 Chen C, Liu Y H, Zhu M, et al. Organic Electronics, 2020, 77, 7.
61 Yang J, Bao C X, Zhu K, et al. ACS Applied Materials & Interfaces, 2018, 10(2), 1996.
62 Walia S, Singh A K, Rao V S G, et al. Bulletin of Materials Science, 2020, 43(1), 8.
63 Kiruthika S, Kulkarni G U. Solar Energy Materials and Solar Cells, 2017, 163, 231.
64 Khan A, Huang Y T, Miyasaka T, et al. ACS Applied Materials & Interfaces, 2017, 9(9), 8083.
65 Jiang Z, Fukuda K, Xu X M, et al. Advanced Materials, 2018, 30(36), 7.
66 Han Y F, Chen X L, Wei J F, et al. Advanced Science, 2019, 6(22), 11.
67 Chen D Z, Fan G, Zhang H X, et al. Nanomaterials, 2019, 9(7), 13.
68 Zhang W H, Xiong J, Wang S, et al. Journal of Power Sources, 2017, 337, 118.
69 Zhong Z Y, Ko P, Youn H, et al. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8(6), 1711.
70 Wang J, Chen X L, Jiang F Y, et al. Solar Rrl, 2018, 2(9), 10.
71 Pozov S M, Schider G, Voigt S, et al. Flexible and Printed Electronics,2019, 4(2), 11.
72 Peng C Y, Chen C B, Guo K P, et al. Physica E-Low-Dimensional Systems & Nanostructures, 2017, 87, 118.
73 Gedda M, Das D, Iyer P K, et al. Materials Research Express, 2020, 7(5), 7.
74 Han J W, Jung B, Kim D W, et al. Organic Electronics, 2019, 73, 13.
75 Yi F S, Bi Y G, Zhang X L, et al. IEEE Transactions on Nanotechnology, 2019, 18, 776.
[1] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[2] 王达浩, 谢凤鸣, 魏怀鑫, 胡英元, 赵鑫. 双苯磺酰基苯类延迟荧光材料的合成及电致发光性质[J]. 材料导报, 2023, 37(4): 21060007-5.
[3] 卓明鹏, 俞燕君, 丁灵奕, 陈伟凡, 廖良生. 稀土发光配合物及其在有机发光二极管中的应用[J]. 材料导报, 2023, 37(3): 21060045-10.
[4] 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健, 朱华, 王艳香. SnO2基钙钛矿太阳能电池的发展[J]. 材料导报, 2022, 36(8): 20060037-12.
[5] 曾奕瑾, 宗朔通. 第一性原理在钙钛矿中的应用研究进展[J]. 材料导报, 2022, 36(8): 20080229-6.
[6] 明帅强, 王浙加, 吴鹿杰, 冯嘉恒, 高雅增, 卢维尔, 夏洋. 原子层沉积法制备SnO2薄膜及其对钙钛矿电池性能的影响[J]. 材料导报, 2022, 36(7): 20110236-6.
[7] 李成, 李绍元, 马文会, 陈秀华, 刘家森, 王琦迪, 陶继尧. 石墨烯/硅肖特基结界面优化研究进展[J]. 材料导报, 2022, 36(21): 20080040-8.
[8] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[9] 孙宗宇, 吕杰, 阚志鹏, 段泰男, 陆仕荣. 基于苯并二噻吩的氟代小分子给体的合成、表征及光伏性能研究[J]. 材料导报, 2022, 36(14): 21020150-5.
[10] 范鸿志, 阿拉腾宝力格, 阿拉塔, 宁君, 塔娜, 特古斯. 可溶液加工对称A-D-A有机小分子太阳能电池给体材料研究进展[J]. 材料导报, 2022, 36(10): 20070075-11.
[11] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[12] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[13] 郑玉杰, 梁鑫斌, 张起, 孙文博, 施童超, 杜鹃, 孙宽. 基于分子指纹及机器学习回归模型的有机光伏材料效率预测[J]. 材料导报, 2021, 35(8): 8207-8212.
[14] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[15] 张意晨, 徐海涛, 赵春辉. 有机太阳能电池PEDOT∶PSS空穴传输层及其改性的研究进展[J]. 材料导报, 2021, 35(3): 3204-3208.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed