Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 20100218-10    https://doi.org/10.11896/cldb.20100218
  高分子与聚合物基复合材料 |
形状记忆微/纳米图案的设计、应用和发展
刘均澔1,†, 李文兵1,†, *, 龚韬2, 魏婉婷1, 钱坤1
1 江南大学生态纺织教育部重点实验室,江苏 无锡 214122
2 南华大学化学化工学院,湖南 衡阳 421001
Shape Memory Micro/Nanopatterns: Categories, Design and Applications
LIU Junhao1,†, LI Wenbing1,†, *, GONG Tao2, WEI Wanting1, QIAN Kun1
1 Key Laboratory of Eco-textiles(Ministry of Education), Jiangnan University, Wuxi 214122, Jiangsu, China
2 School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, China
下载:  全 文 ( PDF ) ( 41402KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 形状记忆聚合物(Shape memory polymer, SMP)是一种受到环境刺激发生形状变化的智能材料。相比于宏观层面的形状记忆效应,通过压印法、再铸模、自组装等方法在SMP表面形成微/纳米图案,SMP微/纳米图案在小型化的智能产品上拥有更好的应用前景。形状记忆微/纳米图案的出现为聚合物未来发展提供了生物医学/液滴操控/微光学/智能胶粘剂等潜在应用方向。本文先是介绍了形状记忆微/纳米图案的类别,并对形状记忆微/纳米图案的制备方法进行了总结,随后对其在各个领域的潜在应用进行了归纳总结,最后提出了形状记忆微/纳米图案的不足以及未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘均澔
李文兵
龚韬
魏婉婷
钱坤
关键词:  形状记忆聚合物  微图案化技术  表面微/纳米图案分类  自组装    
Abstract: Shape memory polymer (SMP) is a type of smart material which has the ability of shape switching in response of stimulation of the environment. Compared with the shape memory effect at the macro level, the formation of micro/nano patterns on the surface of SMPs through imprinting, replica molding, self-assembly methods enhance the exploration of shape memory effect on the micro/nano level. The shape memory micro/nanopatterns provide a new development direction for the future of polymers and exhibit vast potential applications in the fields of biomedicine/droplet control/micro-optics/smart adhesion. This review firstly introduces the categories of shape memory micro/nanopatterns, and then summarizes the preparation methods of shape memory micro/nanopatterns and potential applications in various fields. Finally, the shape memory micro/nanopatterns' shortcomings and development direction are proposed.
Key words:  shape memory polymer    micropatterned technology    micro/nanopatterns category    self-assembly
出版日期:  2022-12-10      发布日期:  2022-12-09
ZTFLH:  TB332  
基金资助: 中央高校基本科研业务费专项资金(JUSRP12031);2020年江苏省双创博士资金([2020] 30822)
通讯作者:  *wenbingli@jiangnan.edu.cn; wenbingli_jnu@163.com   
作者简介:  ?共同第一作者。
刘均澔,2019年在西安工程大学取得学士学位,从2019年至今在江南大学攻读硕士学位,目前在李文兵老师和钱坤老师的指导下进行形状记忆聚合物微纳米图案的研究。
李文兵,江南大学青年教师。2019年毕业于哈尔滨工业大学,获工学博士学位。2017年至2018年,在美国科罗拉多大学博尔德校区(University of Colorado at Boulder)做联合培养博士研究生。主要研究方向为形状记忆功能高分子材料的设计、合成、改性及其在航空航天、生物医学以及纺织品等领域的应用。近年来,在Journal of Materials Chemistry A、ACS Applied Materials & Interfaces、Acta Biomaterialia、Composites Part A: Applied Science and Manufacturing、Composites Part B: Engineering等国际期刊上发表学术论文10余篇。2016年获得美国机械工程师协会(ASME)最佳论文奖。获4项中国发明专利。
引用本文:    
刘均澔, 李文兵, 龚韬, 魏婉婷, 钱坤. 形状记忆微/纳米图案的设计、应用和发展[J]. 材料导报, 2022, 36(23): 20100218-10.
LIU Junhao, LI Wenbing, GONG Tao, WEI Wanting, QIAN Kun. Shape Memory Micro/Nanopatterns: Categories, Design and Applications. Materials Reports, 2022, 36(23): 20100218-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100218  或          http://www.mater-rep.com/CN/Y2022/V36/I23/20100218
1 Qiu C J, Hun T T, Zhao Y T, et al. Chinese Journal of Tissue Engineering Research, 2018, 22(30), 4900 (in Chinese).
邱昌俊, 浑婷婷, 赵莹彤, 等. 中国组织工程研究, 2018, 22(30), 4900.
2 Ebara M, Uto K, Idota N, et al. Advanced Materials, 2012, 24, 273.
3 Fei G X, Tuineabobe C, Li D X, et al. RSC Advances, 2013, 3, 24132.
4 Liu Y J, Lyu H B, Lan X, et al. Composites Science and Technology, 2009, 69, 2064.
5 Drotlef D M, Blümler P, del Campo A, et al. Advanced Materials, 2014, 26, 775.
6 Han X J, Dong Z Q, Fan M M, et al. Macromolecular Rapid Communications, 2012, 33, 1055.
7 Schmaljohann D. Advanced Drug Delivery Reviews, 2006, 58, 1655.
8 Aksoy B, Besse N, Boom R J, et al. Lab on a Chip, 2019, 19, 608.
9 Jahid M A, Hu J, Wong K, et al. Polymers, 2018, 10, 681.
10 Zhang W, Zhang F H, Lan X, et al. Composites Science and Technology, 2018, 160, 224.
11 Kunzelman J, Chung T, Mather P T, et al. Journal of Materials Chemistry, 2008, 18, 1082.
12 Leng J S, Lan X, Liu Y J, et al. Progress in Materials Science, 2011, 56, 1077.
13 Santo L, Quadrini F, Accettura A, et al. Procedia Engineering, 2014, 88, 42.
14 Greco F, Fujie T, Ricotti L, et al. ACS Applied Materials Interfaces, 2013, 5, 573.
15 Schauer S, Meier T, Reinhard M, et al. ACS Applied Materials Interfaces, 2016, 8, 9423.
16 Gong T. Construction of micro structure with shape memory properties for application in biomedicine. Ph. D. Thesis, Southwest Jiaotong University, China, 2016.
龚韬. 形状记忆聚合物微结构的构建及其在生物医学中的应用研究. 博士学位论文, 西南交通大学, 2016.
17 Turner S A, Zhou J, Sheiko S S, et al. ACS Applied Materials Interfaces, 2014, 6, 8017.
18 Ding Y F, Sun J R, Ro H W, et al. Advanced Materials, 2011, 23, 421.
19 Wu Z L, Wang Z J, Keller P, et al. Macromolecular Rapid Communications, 2016, 37, 311.
20 Li Z, Black T, Rahman H A, et al. Polymer, 2018, 137, 156.
21 Lin Y C, Hu Z Y, Gao C L, et al. Advanced Functional Materials, 2018, 28, 1800163.
22 Wang J, Chu C Z, He Y, et al. Biosurface and Biotribology, 2019, 5, 46.
23 Davis K A, Burke K A, Mather P T, et al. Biomaterials, 2011, 32, 2285.
24 Davis K A, Henderson J H. In: 2010 39th Annual Northeast Bioengineering Conference. New York, 2013. pp. 33.
25 Ebara M, Uto K, Idota N, et al. International Journal of Nanomedicine, 2014, 9, 117.
26 Mengsteab P Y, Uto K, Smith A ST, et al. Biomaterials, 2016, 86, 1.
27 Zheng X T, Xin L B, Luo Y L, et al. ACS Applied Materials Interfaces, 2019, 11, 43689.
28 Chen C M, Yang S. Advanced Materials, 2014, 26, 1283.
29 Sun T L, Wang G J, Feng L, et al. Angewandte Chemie International Edition, 2004, 43, 357.
30 Le D M, Kulangara K, Adler A F, et al. Advanced Materials, 2011, 23, 3278.
31 Li J, Shim J, Deng J, et al. Soft Matter, 2012, 8, 10322.
32 Zhang D J, Cheng Z J, Liu Y Y. Chemistry-A European Journal, 2019, 25, 3979.
33 Cheng Z J, Zhang D J, Lyu T, et al. Advanced Functional Materials, 2018, 28, 1705002.
34 Gu H, Lee S W, Buffington S L, et al. ACS Applied Materials Interfaces, 2016, 8, 21140.
35 Gong T, Lu L X, Liu D, et al. Journal of Materials Chemistry B, 2015, 3, 9011.
36 Zhao L Y, Zhao J, Liu Y Y, et al. Small, 2016, 12, 3327.
37 Ohzono T, Monobe H. Journal of Colloid and Interface Science, 2012, 368, 1.
38 Li J, An Y H, Huang R, et al. ACS Applied Materials Interfaces, 2012, 4, 598.
39 Xie T, Xiao X C, Li J J, et al. Advanced Materials, 2010, 22, 4390.
40 Tokudome Y, Suzuki K, Kitanaga T, et al. Scientific Reports, 2012, 2, 683.
41 Takahashi M, Suzuki K, Tokudome Y, et al. Journal of Sol-Gel Science and Technology, 2014, 70, 272.
42 Han Y, Liu Y X, Wang W X, et al. Soft Matter, 2016, 12, 2708.
43 Gong T, Zhao K, Liu X, et al. Small, 2016, 12, 5769.
44 Liu D, Xiang T, Gong T, et al. ACS Applied Materials Interfaces, 2017, 9, 19725.
45 Baer G M, Small W, Wilson T S, et al. BioMedical Engineering OnLine, 2007, 6, 43.
46 Guo L J. Advanced Materials, 2007, 19, 495.
47 Wang Z, Hansen C, Ge Q, et al. Advanced Materials, 2011, 23, 3669.
48 Li W B, Gong T, Chen H M, et al. RSC Advances, 2013, 3, 9865.
49 Bae W G, Choi J H, Lee S H, et al. In: 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Tokyo, 2010. pp. 594.
50 Sun H W, Liu J Q, Chen D, et al. Electronics Process Technology, 2004, 25(3), 93 (in Chinese).
孙洪文, 刘景全, 陈迪, 等. 电子工艺技术, 2004, 25(3), 93.
51 Zhang Y, Lo C W, Taylor J A, et al. Langmuir, 2006, 22, 8595.
52 Lee E, Zhang M L, Cho Y G, et al. Advanced Materials, 2014, 26, 4127.
53 Chen C M, Chiang C L, Lai C L, et al. Advanced Functional Materials, 2013, 23, 3813.
54 Park J, Youn J R, Song Y S, et al. ACS Applied Materials Interfaces, 2017, 9, 44724.
55 Zhao Y, Huang W M, Fu Y Q, et al. Journal of Micromechanics and Microengineering, 2011, 21, 067007.
56 Zhao L Y, Zhang L P, Zhao J, et al. ACS Applied Materials Interfaces, 2019, 11, 1563.
57 Lyu H B, Liu Y Z, Xu B B, et al. Composites Part B, 2017, 122, 9.
58 Schauer S, Worgull M, Hölscher H, et al. Soft Matter, 2017, 13, 4328.
59 Wu C H, Lu C S, Chen W L, et al. Macromolecular Materials and Engineering, 2018, 303, 1700433.
60 García-Huete N, Cuevas J, Laza J, et al. Polymers, 2015, 7, 1674.
61 Sarwate P, Chakraborty A, Garg V, et al. Journal of Micromechanics and Microengineering, 2014, 24, 115006.
62 Reddy S T, Arzt E, del Campo A, et al. Advanced Materials, 2007, 19, 3833.
63 Cui J, Drotlef D M, Larraza I, et al. Advanced Materials, 2012, 24, 4601.
64 Wang Y, Xiao J L. Soft Matter, 2017, 13, 5317.
65 Eisenhaure J D, Xie T, Varghese S, et al. ACS Applied Materials Interfaces, 2013, 5, 7714.
66 Huang Y, Zheng N, Cheng Z Q, et al. ACS Applied Materials Interfaces, 2016, 8, 35628.
67 Drotlef D M, Blümler P, Papadopoulos P, et al. ACS Applied Materials Interfaces, 2014, 6, 8702.
68 Song J L, Gao M Q, Zhao C L, et al. ACS Nano, 2017, 11, 9259.
69 Lyu T, Cheng Z J, Zhang D J, et al. ACS Nano, 2016, 10, 9379.
70 Lai H, Shang Y Q, Cheng Z J, et al. Advanced Composites and Hybrid Materials, 2019, 2, 753.
71 Xu H X, Yu C J, Wang S D, et al. Advanced Functional Materials, 2013, 23, 3299.
72 Park J, Youn J R, Song Y S, et al. Journal of Materials Chemistry C, 2017, 5, 10600.
73 Niu W B, Zhao K, Qu L C, et al. Journal of Materials Chemistry C, 2018, 6, 8385.
74 Espinha A, Serrano M C, Blanco Á, et al. Advanced Optical Materials, 2014, 2, 516.
75 Zheng Y W, Li J, Lee E, et al. RSC Advances, 2015, 5, 30495.
76 Li P, Han Y, Wang W X, et al. Scientific Reports, 2017, 7, 44333.
77 Li F D, Hou H D, Yin J, et al. Science Advances, 2018, 4, eaar5762.
78 Liu S S, Xiang Z H, Ma Z F, et al. Chinese Journal of Polymer Science, 2020, 38, 696.
79 Liu X C, Chakraborty A, Luo C, et al. Journal of Micromechanics and Microengineering, 2010, 20, 095025.
80 Chakraborty A, Liu X C, Luo C, et al. In: 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. Beijing, 2011, pp. 1328.
81 Ebara M, Uto K, Idota N, et al. Soft Matter, 2013, 9, 3074.
82 Lee J H, Hinchet R, Kim S K, et al. Energy Environmental Science, 2015, 8, 3605.
[1] 张壹霖, 腾凡, 高庆, 杨婷婷. 基于RAFT调控的聚合诱导自组装研究进展[J]. 材料导报, 2022, 36(Z1): 22030070-5.
[2] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[3] 杨方平, 宋子元, 殷黎晨, 唐浩宇, 程建军. 聚氨基酸材料的研究进展[J]. 材料导报, 2022, 36(3): 21080287-18.
[4] 王冕, 张全超, 敖海勇, 万怡灶. 形状记忆聚合物表面响应性润湿性研究进展[J]. 材料导报, 2022, 36(21): 20090319-9.
[5] 张芳芳, 周蕊, 孙毅刚, 刘兵飞, 杜春志, 洪彬. 基于细观相变和黏弹性本构模型的SMP热力循环数值模拟对比分析[J]. 材料导报, 2022, 36(15): 21030129-7.
[6] 李慧姝, 卢豪, 顾宇红. 聚合物刷在溶剂中的自组装行为及弹性响应[J]. 材料导报, 2022, 36(15): 21030320-5.
[7] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[8] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[9] 薛敏, 张祥, 刘璐, 常文浩, 李蓓蓓. 双组分超分子凝胶材料的形成机理及流变性能[J]. 材料导报, 2021, 35(8): 8201-8206.
[10] 冯茹, 许雅惠, 韩慧, 黄文峻, 王延斌, 李兴建. 4D打印形状记忆高分子的打印方法、驱动原理、变形模式和应用[J]. 材料导报, 2021, 35(5): 5147-5157.
[11] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[12] 朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
[13] 卢爽, 刘琳, 谢锦印, 武亚琪, 邢锦娟. 2-氨基苯并咪唑缩对甲基苯甲醛席夫碱的合成及缓蚀性能[J]. 材料导报, 2021, 35(20): 20195-20199.
[14] 王艳坤. 四氧化三铁/石墨烯纳米复合材料的静电自组装制备及储锂性能[J]. 材料导报, 2021, 35(16): 16008-16014.
[15] 龙涛, 杨新国, 李丝雨, 王影, 毛凤余. 二元溶剂体系对含仲胺基团苝酰亚胺衍生物自组装与光电性能的影响[J]. 材料导报, 2021, 35(10): 10176-10183.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed