Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 20090319-9    https://doi.org/10.11896/cldb.20090319
  高分子与聚合物基复合材料 |
形状记忆聚合物表面响应性润湿性研究进展
王冕1, 张全超1,*, 敖海勇1, 万怡灶1,2
1 华东交通大学先进材料研究院,江西省纳米生物重点实验室,南昌 330013
2 天津大学材料科学与工程学院,天津 300072
Research Progress of Stimulated Responsive Wettability on Shape-memory Polymer Surfaces
WANG Mian1, ZHANG Quanchao1,*, AO Haiyong1, WAN Yizao1,2
1 Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials,East China Jiaotong University, Nanchang 330013, China
2 School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
下载:  全 文 ( PDF ) ( 13058KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 润湿性是固体材料表面的一种重要性质,会影响材料的各种功能。随着人们对材料性能要求的不断提高,具有固定润湿性能的表面已不能满足复杂多变的应用环境,亟需开发各种具有响应性润湿性的表面。在这种背景下,形状记忆聚合物(SMP)基响应性润湿性表面因具有简单方便及良好的可控性等优点,在液滴定向传输、气泡收集和油水分离等领域具有巨大的应用潜力,引起了人们的广泛关注。
众所周知,调控SMP表面的微结构及形状记忆编程手段是控制SMP表面响应性润湿性的重要方法。虽然众多文献均对此进行了简单探讨,但是二者到底如何影响SMP表面的响应性润湿性,尚缺乏系统而深入的论述。本文基于SMP材料表面不同的微结构(微柱阵列、多孔结构、纹路结构及二元杂化结构),从垂直热压、倾斜热压、选区热压及热拉等编程手段出发,综述了近年来SMP表面响应性润湿性方面的研究进展,并着重介绍了不同的编程及形状记忆回复参数对材料表面响应性润湿性能的影响。最后,指出了当前SMP响应性润湿性表面存在的问题及可能的发展方向。
本文通过梳理表面微结构和编程手段调控SMP表面可控润湿性的最新进展,以期帮助材料领域相关研究人员加深对SMP基响应性润湿性表面的理解,并为智能表面响应性润湿性的研究和开发提供技术及理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王冕
张全超
敖海勇
万怡灶
关键词:  响应性润湿性  形状记忆聚合物  微结构  编程    
Abstract: The wettability is an important property of a solid material surface, which can affect various functions of the material. Now, the surfaces with fixed wettability cannot meet the complex and changeable application environment, and thus developing the surfaces with responsive wettability is highly desired. In this context, the stimulated responsive wettability on shape-memory polymer (SMP) surface, which exhibits the advantages of simplicity, convenience and controllability, is potentially used in the fields of droplet directional transmission, bubble collection, and oil-water separation.
It is well known that the microstructure of the SMP surface and the shape-memory programming method are the main approaches to control the responsive wettability of the SMP surface. Although many publications have focused on the issues, the systematic and in-depth discussion about how the above two aspects actuated the responsive wettability of SMP surface is still lacking.
In this paper, from the viewpoints of the different microstructures on SMP surface (micropillar array, porous structure, wrinkle structure, and binary hybrid structure) and different programming methods (vertical hot pressing, inclined hot pressing, selective hot pressing, and hot stretching), we summarize the latest progress for the stimulated responsive wettability on SMP surface; in which, the influences of programming methods and shape memory recovery parameters on the stimulated responsive wettability of SMP surface are highlighted. Finally, the challenges and development trends of the current SMP based responsive wettability surface are proposed.
This paper reviews the latest progress of the influence of microstructure and programming methods on the responsive wettability of SMP surface, which is expected to help researchers in the material field deepen their understanding on SMP based responsive wettability surfaces, andto provide technical and theoretical guidance for developing the smart responsive wettability surface.
Key words:  stimulated responsive wettability    shape-memory polymer    microstructure    programming
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TQ317.3  
基金资助: 江西省青年自然科学基金(20202BABL214018);江西省教育厅科学技术研究项目(GJJ190352)
通讯作者:  * zhangquanchao2006@126.com   
作者简介:  王冕,2017年6月毕业于江汉大学文理学院,获得理学学士学位。现为华东交通大学先进材料研究院硕士研究生,在张全超博士的指导下进行研究。目前主要研究领域为形状记忆聚合物。
张全超,博士,华东交通大学讲师、硕士研究生导师。本、硕均就读于四川大学,分别于2009年和2012年获工学学士学位和工学硕士学位。2018年毕业于德国亥姆霍兹吉斯达赫特材料与海洋研究中心(注册大学:波兹坦大学),获工学博士学位。主要研究方向为智能形状记忆高分子及其复合材料。以第一作者及通讯作者发表论文20篇。申请中国国家发明专利10余项,已获授权4项,申请国际专利3项。
引用本文:    
王冕, 张全超, 敖海勇, 万怡灶. 形状记忆聚合物表面响应性润湿性研究进展[J]. 材料导报, 2022, 36(21): 20090319-9.
WANG Mian, ZHANG Quanchao, AO Haiyong, WAN Yizao. Research Progress of Stimulated Responsive Wettability on Shape-memory Polymer Surfaces. Materials Reports, 2022, 36(21): 20090319-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090319  或          http://www.mater-rep.com/CN/Y2022/V36/I21/20090319
1 Young T. Philosophical Transactions of the Royal Society of London, 1805, 95, 65.
2 Liu K, Jiang L. Annual Review of Materials Research, 2012, 42(1), 231.
3 Lv J, Song Y, Jiang L, et al. ACS Nano, 2014, 8(4), 3152.
4 Zhang F, Zhao L, Chen H, et al. Angewandte Chemie International Edition in English, 2008, 47(13), 2466.
5 Zheng Y, Bai H, Huang Z, et al. Nature, 2010, 463(7281), 640.
6 Li Y, Zhao C. ACS Catalysis, 2017, 7(4), 2535.
7 Meuler A J, McKinley G H, Cohen R E. ACS Nano, 2010, 4(12), 7048.
8 Ju J, Bai H, Zheng Y, et al. Nature Communications, 2012, 3, 1247.
9 George J E, Rodrigues V R M, Mathur D, et al. Materials & Design, 2016, 100, 8.
10 Andreeva D V, Fix D, Mohwald H, et al. Advanced Materials, 2008, 20(14), 2789.
11 Ranella A, Barberoglou M, Bakogianni S, et al. Acta Biomaterialia, 2010, 6(7), 2711.
12 Yao X, Hu Y, Grinthal A, et al. Nature Materials, 2013, 12(6), 529.
13 Hou S, Zhao H, Zhao L, et al. Advanced Materials, 2013, 25(11), 1547.
14 Wang N, Xiong D, Deng Y, et al. ACS Applied Materials & Interfaces, 2015, 7(11), 6260.
15 Huber D L, Manginell R P, Samara M A, et al. Science, 2003, 301(5631), 352.
16 Song H, Chen D L. Angewandte Chemie International Edition in English, 2006, 45(44), 7336.
17 Brown P S, Atkinson O D, Badyal J P. ACS Applied Materials & Interfaces, 2014, 6(10), 7504.
18 Wenzel R N. Industrial & Engineering Chemistry, 1936, 28(8), 988.
19 Huang X, Sun Y, Soh S. Advanced Materials, 2015, 27(27), 4062.
20 Liu H, Jiang L. Small, 2016, 12(1), 9.
21 Cassie A B D, Baxter S. Transactions of the Faraday Society, 1944, 40, 546.
22 Liu H, Ding Y, Ao Z, et al. Small, 2015, 11(15), 1782.
23 Manna U, Lynn D M. Advanced Materialsv, 2015, 27(19), 3007.
24 Li J, Jing Z, Zha F, et al. ACS Applied Materials & Interfaces, 2014, 6(11), 8868.
25 Feng X, Feng L, Jin M, et al. Journal of the American Chemical Society, 2004, 126(1), 62.
26 Wu M, Ma B, Pan T, et al. Advanced Functional Materials, 2016, 26(4), 569.
27 Zhang D, Cheng Z, Kang H, et al. Angewandte Chemie International Edition, 2018, 57(14), 3701.
28 Wong W S Y, Gutruf P, Sriram S, et al. Advanced Functional Materials, 2016, 26(3), 399.
29 Chung J Y, Youngblood J P, Stafford C M. Soft Matter, 2007, 3(9), 1163.
30 Lendlein A, Kelch S. Angewandte Chemie International Edition, 2002, 41(12), 2034.
31 Leng J, Lan X, Liu Y, et al. Progress in Materials Science, 2011, 56(7), 1077.
32 Chen C M, Yang S. Advanced Materials, 2014, 26(8), 1283.
33 García-Huete N, Cuevas J, Laza J, et al. Polymers, 2015, 7(9), 1674.
34 Jiang Y, Mansfeld U, Fang L, et al. Materials & Design, 2019, 163, 107530.
35 Park J K, Kim S. Lab on a Chip, 2017, 17(10), 1793.
36 Bai X, Yang Q, Fang Y, et al. Chemical Engineering Journal, 2020, 383, 123143.
37 Lyu T, Cheng Z, Zhang D, et al. ACS Nano, 2016, 10(10), 9379.
38 Chen C M, Chiang C L, Yang S. Langmuir, 2015, 31(35), 9523.
39 Ge P, Wang S, Zhang J, et al. Materials Horizons, 2020, 7(10), 2566.
40 Cheng Z, Zhang D, Lyu T, et al. Advanced Functional Materials, 2018, 28(7), 1705002.
41 Zhang A, Bai H, Li L. Chmmical Reviews, 2015, 115(18), 9801.
42 Bertrand A, Bousquet A, Lartigau-Dagron C, et al. Chemical Communications, 2016, 52(61), 9562.
43 Zhao L, Zhao J, Liu Y, et al. Small, 2016, 12(24), 3327.
44 Wu C H, Lu C S, Chen W L, et al. Macromolecular Materials and Engineering, 2018, 303(2), 1700433.
45 Zhang L, Zhao J, Xu J, et al. ACS Applied Materials & Interfaces, 2020, 12(37), 42314.
46 Han Y, Liu Y, Wang W, et al. Soft Matter, 2016, 12(10), 2708.
47 Zhao L, Zhang L, Zhao J, et al. ACS Applied Materials & Interfaces, 2019, 11(1), 1563.
48 Chen H, Zhang P, Zhang L, et al. Nature, 2016, 532(7597), 85.
49 Tian Y, Su B, Jiang L. Advanced Materials, 2014, 26(40), 6872.
50 Park K C, Kim P, Grinthal A, et al. Nature, 2016, 531(7592), 78.
51 You I, Lee T G, Nam Y S, et al. ACS Nano, 2014, 8(9), 9016.
52 Phillips K R, England G T, Sunny S, et al. Chemical Society Reviews, 2016, 45(2), 281.
53 Wang J, Sun L, Zou M, et al. Science Advances, 2017, 3(6), e1700004.
[1] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[2] 姚峄林, 张锦秋, 杨培霞, 安茂忠. 激光辅助电沉积技术及其在制备功能材料方面的应用[J]. 材料导报, 2022, 36(3): 20080209-9.
[3] 张芳芳, 周蕊, 孙毅刚, 刘兵飞, 杜春志, 洪彬. 基于细观相变和黏弹性本构模型的SMP热力循环数值模拟对比分析[J]. 材料导报, 2022, 36(15): 21030129-7.
[4] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[5] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[6] 石永恒, 芶立. 晶核剂对CMAS系微晶玻璃结构和性能的影响[J]. 材料导报, 2021, 35(5): 5027-5031.
[7] 冯茹, 许雅惠, 韩慧, 黄文峻, 王延斌, 李兴建. 4D打印形状记忆高分子的打印方法、驱动原理、变形模式和应用[J]. 材料导报, 2021, 35(5): 5147-5157.
[8] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[9] 贺文志, 邓承继, 丁军, 余超, 王杏, 祝洪喜. 多孔Mo2C/C复合陶瓷材料的制备及吸附性能[J]. 材料导报, 2021, 35(24): 24052-24056.
[10] 王杏, 陈洋, 曹桂莲, 邓承继, 丁军, 余超, 祝洪喜. 氮化温度对MgO-C耐火材料结构和性能的影响[J]. 材料导报, 2021, 35(12): 12053-12056.
[11] 刘显刚, 安建成, 孙佳佳, 张骞, 秦艳濛, 刘新红. 化学气相沉积法制备SiC纳米线的研究进展[J]. 材料导报, 2021, 35(11): 11077-11082.
[12] 尹雪亮, 刘洋, 李丽颖, 宫长伟, 杜成武, 毛榜玉, 彭可武. 添加ZrO2对CaAl4O7材料烧结的影响[J]. 材料导报, 2020, 34(Z1): 144-147.
[13] 吴建辉, 吴蒙华, 佐姗姗, 钱宁开. 无掩模定域性电沉积三维微结构的仿真研究[J]. 材料导报, 2020, 34(Z1): 427-432.
[14] 李萌, 杨成博, 张静, 郑开宏. 轻质高熵合金的研究现状[J]. 材料导报, 2020, 34(21): 21125-21134.
[15] 吕文强, 辛勇. 聚碳酸酯/聚对苯二甲酸丁二醇酯共混物形态结构对微结构注塑制品性能的影响[J]. 材料导报, 2020, 34(10): 10201-10205.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed