Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 20100214-9    https://doi.org/10.11896/cldb.20100214
  金属与金属基复合材料 |
内生块体非晶复合材料的加工硬化行为研究进展
翟海民1,2,*, 欧梦静1,2, 袁花妍1,2, 崔帅3, 李文生1,2,*
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
3 南京理工大学材料科学与工程学院,南京 210094
Research Progress on Work-hardening Behavior of In-situ Bulk Metallic Glass Composites
ZHAI Haimin1,2,*, OU Mengjing1,2, YUAN Huayan1,2, Cui Shuai3, LI Wensheng1,2,*
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals,Lanzhou University of Technology,Lanzhou 730050,China
2 School of Materials Science and Engineering,Lanzhou University of Technology,Lanzhou 730050,China
3 School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
下载:  全 文 ( PDF ) ( 26688KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 块体非晶合金由于其短程有序、长程无序的结构特点,具有了一系列优异的机械特性和物理特性,被认为是一种潜在的结构材料并得到广泛研究。但其室温受载后易发生局域剪切所致的脆断,特别是在单轴拉伸时几乎没有任何塑性。为克服这个缺点,研究者们提出通过引入晶体相来抑制剪切带的失稳扩展,从而在非晶复合材料中获得了室温拉伸塑性。然而,大部分的Ti基、Zr基非晶复合材料晶体相中的位错强化作用不足以弥补非晶剪切软化作用,导致非晶复合材料在变形过程中发生软化颈缩现象,这很大程度上限制了非晶复合材料的实际工程应用。研究者们将传统钢铁材料中的强化机制,如相变(Transformation-induced plasticity,TRIP)或孪晶(Twining-induced pplasticity,TWIP)诱导塑性等,引入内生非晶复合材料中来改善其软化问题。由于这些强化机制的引入,非晶基体中多重剪切带萌生扩展导致的剪切软化作用被弥补,因此在CuZr基、Ti基等体系的非晶复合材料获得了明显的加工硬化能力和拉伸塑性。本文围绕内生非晶复合材料中的加工硬化行为这一关键科学问题,对非晶复合材料中几种常见的产生加工硬化的方法进行分类介绍,重点阐述了近10年来非晶复合材料领域加工硬化机制的研究进展,并且指出了目前非晶复合材料强韧化研究领域存在的问题和挑战,以期为强韧化内生非晶复合材料的设计与制备以及微观变形机制的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟海民
欧梦静
袁花妍
崔帅
李文生
关键词:  内生非晶复合材料  加工硬化  应力诱导相变强化  应力诱导孪晶强化  位错强化    
Abstract: Bulk metallic glass (BMG) exhibits excellent mechanical and physical properties owing to its short-range order and long-range disorder. Such glasses have been widely studied as potential structural materials. However,they are prone to brittle fracture when loaded at room temperature because they undergo local shearing at room temperature,especially under uniaxial tension,thereby lacking plasticity. To overcome this shortcoming,researchers have proposed that introducing a crystalline phase would suppress the instability expansion of the shear band,thereby ensuring the tensile ductility of BMG composites (BMGCs) at room temperature. However,in most in-situ Ti- and Zr-based BMGCs,the dislocation strengthening in the crystalline phase could not compensate for the shear softening effect in the glass matrix. The resultant softening and necking during deformation limit the practical engineering applications of BMGCs. Researchers have also proposed the strengthening mechanisms of traditional steel materials,such as transformation-induced plasticity or twining-induced plasticity for BMGCs. These strengthening mechanisms adequately compensate for the shear softening effect caused by the initiation and expansion of multiple shear bands in the glass matrix. The strengthened CuZr- and Ti-based BMGCs show obviously improved work-hardening ability and tensile plasticity. This work focuses on the key scientific problems related to the work-hardening behaviour of BMGCs,classifies and introduces several common methods for work hardening in BMGCs, and discusses the research progress on hardening mechanisms of BMGCs in the last decade. Moreover, current problems associated with the strengthening and hardening of BMGCs are discussed,providing a reference for the design and preparation of toughened in-situ BMGCs and the study of microscopic deformation mechanisms.
Key words:  bulk metallic glass composite    work hardening    stress-induced phase transformation strengthening    stress-induced twinning strengthening    dislocation strengthening
发布日期:  2022-12-09
ZTFLH:  TG146.4  
基金资助: 国家自然科学基金(51901092;52075234);科技部丝绸之路经济带金属表面工程技术国家国际科技合作基金(2017D01003);甘肃省青年科技基金计划(20JR5RA431);兰州理工大学红柳优秀青年人才支持计划(26/062005);湖南理工学院湖南省电磁装备设计与制造重点实验室开放基金资助课题(DC202001)
通讯作者:  *hmzhai@lut.edu.cn;liws@lut.edu.cn   
作者简介:  翟海民,兰州理工大学省部共建有色金属加工与再利用国家重点实验室副研究员。2010年7月及2017年6月于西北工业大学获得本科学位和博士学位。主要从事Ti基和Fe基块体非晶复合材料的制备及增韧机理以及耐磨蚀非晶涂层失效机理方面研究。
李文生,兰州理工大学教授、博士研究生导师,材料科学与工程学院院长。2006年7月在兰州理工大学获工学博士学位。主要从事金属表面防护与延寿技术领域研究及工程化应用工作。发表学术论文100余篇,授权国家发明专利25项。
引用本文:    
翟海民, 欧梦静, 袁花妍, 崔帅, 李文生. 内生块体非晶复合材料的加工硬化行为研究进展[J]. 材料导报, 2022, 36(23): 20100214-9.
ZHAI Haimin, OU Mengjing, YUAN Huayan, Cui Shuai, LI Wensheng. Research Progress on Work-hardening Behavior of In-situ Bulk Metallic Glass Composites. Materials Reports, 2022, 36(23): 20100214-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100214  或          http://www.mater-rep.com/CN/Y2022/V36/I23/20100214
1 Inoue A,Takeuchi,A. Acta Materialia 2011,59,2243.
2 Greer A L,Cheng Y Q,Ma E. Materials Science and Engineering R: Reports, 2013,74,71.
3 Li H X,Lu Z C,Wang S L,et al. Progress in Materials Science,2019,103,235.
4 Wang W H. Progress in Physics,2013,33(5),177 (in Chinese).
汪卫华. 物理学进展,2013,33(5),177.
5 Eckert J,Das J,Pauly S,et al. Advanced Engineering Materials,2007,9(2),443.
6 Qiao J W. Journal of Materials Science and Technology,2013,29(8),685.
7 Qiao J,Jia H,Liaw P K. Materials Science and Engineering R: Reports,2016,100,1.
8 Hays C C,Kim C P,Johnson W L. Physical Review Letters,2000,84,2901.
9 Hofmann D C,Suh J Y,Wiest A,et al. Nature,2008,451,1085.
10 Hofmann D C,Suh J Y,Wiest A,et al. Proceedings of the National Academy of Sciences of the United States of America,2008,105,20136.
11 Qiao J W,Wang S,Zhang Y,et al. Applied Physics Letters,2009,94,151905.
12 Narayan R L,Singh P S,Hofmann D C,et al. Acta Materialia, 2012,60,5089.
13 Chen G,Cheng J L,Liu C T. Intermetallics,2012,28,25.
14 Cheng J L,Chen G,Liu C T,et al. Scientific Reports,2013,3,2097.
15 Bai J,Li J S,Qiao J W,,et al. Scientific Reports,2016,6,32287
16 Qiao J W,Sun A C,Huang E W,et al. Acta Materialia,2011,29,4126.
17 Oh Y S,Kim C P,Lee S,et al. Acta Materialia,2011,59,7277.
18 Jeon C,Kim C P,Joo S H,et al. Acta Materialia,2013,61,3012.
19 Rim K R,Park J M,Kim W T,et al. Journal of Alloys and Compounds,2013,579,253.
20 Park J M,Lim K R,Park E S,et al. Journal of Alloys and Compounds,2014,615,S113.
21 Kolodziejska J A,Kozachkov H,Kranjc K,et al. Scientific Reports,2016,6,22563.
22 Zhang L,Narayan R L,Fu H M,et al. Acta Materialia,2019,168,24.
23 Lee M L,Li Y,Schuh C A. Acta Materialia,2004,52,4121.
24 Qiao J W,Zhang Y,Jia H L,et al. Applied Physics Letters,2012,100,121902.
25 Pauly S,Gorantla S,Wang G,et al. Nature Materials,2010,9,473.
26 Song W L,Song K K,Liu Z Q,et al. Materials China,2014,33(5),300(in Chinese).
宋温丽,宋凯凯,刘增乾,等. 中国材料进展,2014,33(5),300.
27 Wu Y,Song W L,Zhou J,et al. Acta Physica Sinica, 2017,66(17),176111 (in Chinese).
吴渊,宋温丽,周捷,等.物理学报,2017,66(17),176111.
28 Fan J,Qiao J W,Wang Z H,et al. Scientific Reports,2017,7,1877.
29 Zhai H M,Wang H F,Liu F. Journal of Alloys and Compounds,2016,685,322.
30 Wu Y,Xiao Y H,Chen G L,et al. Advanced Materials,2010,22,2770.
31 Wu Y,Wang H,Wu H H,et al. Acta Materialia,2011,59,2928.
32 Hofmann D C. Science,2010,329,1294.
33 Liu Z Q,Li R,Liu G,et al. Acta Materialia,2012,60,3128.
34 Kim C P,Oh Y S,Lee S,et al. Scripta Materialia,2011,65,304.
35 Fan J,Rao W,Qiao J W,et al. Journal of Materials Science and Technology, 2020,50,192.
36 Zhai H M,Xu Y H,Du Y,et al. Journal of Non-Crystalline Solids,2017,471,128.
37 Gao J H,Sharp J,Guan D,et al. Acta Materialia, 2015,86,208.
38 Chen M W,Inoue A,Zhang W,et al. Physical Review Letters,2006,96,245502.
39 Sun G Y,Zhang M. Materials Reports B:Research Papers,2019,33(1),462(in Chinese).
孙国元,张敏. 材料导报:研究篇,2019,33 (1),462.
40 Shao Y,Yao K F,Li M,et al. Applied Physics Letters,2013,103,171901.
41 Qiao J W,Zhang T,Yang F Q,et al. Scientific Reports,2013,3,2816.
42 Pan J,Wang Y X,Guo Q,et al. Nature Communications,2018,9,560.
43 Zhai H M,Wang H F,Liu F. Transactions of Nonferrous Metals Society of China (English Edition),2017,27,363.
44 Eckert J,Das J,Kim K B,et al. Intermetallics,2006,14,876.
45 Liu Y H,Wang G,Wang R J,et al. Science,2007,315,1385.
46 Wang Z T,Pan J,Li Y,et al. Physical Review Letters,2013,111,135504.
47 Pan J,Ivanov Yu P,Zhou W H,,et al. Nature,2020,578,559.
48 Lu Z P,Jiang S H,He J Y,et al. Acta Metallurgica Sinica,2016,52(10),1183(in Chinese).
吕昭平,蒋虽合,何骏阳,等. 金属学报,2016,52(10),1183.
49 Zhang Z Y,Wu Y,Zhou J,et al. Intermetallics,2013,42,68.
50 Zhang Z Y,Wu Y,Zhou J,et al. Scripta Materialia,2013,69,73.
51 Hong S H,Kim J T,Park H J,et al. Intermetallics,2015,62,36.
52 Hong S H,Kim J T,Park H J,et al. Intermetallics,2016,75,1.
53 Louzguine-Luzgin D V,Vinogradov A, Xie G, et al. Philosophical Magazine,2009,89(32),2887.
54 Guo W,Kato H. Materials and Design,2015,83,238.
55 Wu F F,Chan K C,Jiang S S,et al. Scientific Reports,2014,4,5302.
56 Pauly S,Das J,Bednarcik J,et al. Scripta Materialia,2009,60,431.
57 Song K K,Pauly S,Zhang Y,et al. Acta Materialia,2011,59,6620.
58 Song K K,Pauly S,Sun B A,et al. Intermetallics,2012,30,132.
59 Liu Y J,Yao H W,Zhang T W,et al. Materials Science & Engineering A,2017,682,542.
60 Pauly S,Liu G,Wang G,et al. Acta Materialia,2009,57,5445.
61 Liu Z Q,Liu G,Qu R T,et al. Scientific Reports,2014,4,4167.
62 Jiang Y P,Qiu K. Materials & Design,2015,65,410.
63 Shete M K,Singh I,Narasimhan R,et al. Scripta Materialia,2016,124,51.
64 Zhou H F,Qu S X,Yang W. International Journal of Plasticity,2013,44,147.
65 Liu Z Q,Li R,Liu G,et al. AIP Advances,2012,2,032176.
66 Wu G J,Li R,Liu Z Q,et al. Intermetallics,2012,24,50.
67 Okulov I V,Soldatov I V,Sarmanova M F,et al. Nature Communications,2015,6,7932.
68 Song W L,Wu Y,Wang H,et al. Advanced Materials,2016,28,8156.
69 Mu J,Zhu Z W,Su R,et al. Acta Materialia,2013,61,5008.
70 Wu Y,Zhou D Q,Song W L,et al. Physical Review Letters,2012,109,245506.
71 Sun B A,Song K K,Pauly S,et al. International Journal of Plasticity,2016,85,34.
72 Dong J L,Zhang T W,Wang Z,et al. Materials Science & Engineering A,2018,736,329.
73 Zhang L,Pauly S,Tang M Q,et al. Scientific Reports,2016,6,19235.
74 Zhang L,Zhu Z W,Fu H M,et al. Materials Science and Engineering: A,2017,689,404.
75 Zhang L,Narayan R L,Fu H M,et al. Acta Materialia,2019,168,24.
76 Zhang L,Zhang H F,Li W Q,et al. Journal of Alloys and Compounds,2017,708,972.
77 Hofmann D C,Suh J Y,Wiest A,et al. Scripta Materialia,2008,59,684.
78 Zhai H M,Wang H F,Liu F. Materials & Design,2016,110,782.
79 Sun X H,Wang Y S,Fan J,et al. Materials & Design,2015,86,266.
80 Xia S H,Wang J T. International Journal of Plasticity,2010,26,1442.
81 Weng G J. Journal of the Mechanics and Physics of Solids,1990,38,419.
82 Zhai H M,Xu Y H,Zhang F,et al. Journal of Alloys and Compounds,2016,694,1.
83 Chen H,He Y,Shiflet G J,et al. Nature,1994,367,541.
[1] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[2] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[3] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[4] 张建龙, 薛河, 崔英浩, 陈浩. 加工硬化对304不锈钢应力腐蚀裂纹裂尖力学性能的影响[J]. 材料导报, 2019, 33(24): 4147-4151.
[5] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[6] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[7] 王永强, 朱国辉, 陈其伟, 丁汉林, 万德成. 高强度超细晶金属材料塑性行为及增塑研究进展[J]. 材料导报, 2018, 32(19): 3414-3422.
[8] 丁雨田,高钰璧,豆正义,高鑫,贾智. GH3625合金管材冷变形行为及热处理工艺研究*[J]. 材料导报编辑部, 2017, 31(10): 70-76.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed