Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 21080287-18    https://doi.org/10.11896/cldb.21080287
  生物医用材料 |
聚氨基酸材料的研究进展
杨方平1, 宋子元1, 殷黎晨1, 唐浩宇1, 程建军2
1 苏州大学功能纳米与软物质研究院,江苏 苏州 215123
2 西湖大学工学院,杭州 310024
Research Progress of Synthetic Polypeptides Materials
YANG Fangping1, SONG Ziyuan1, YIN Lichen1, TANG Haoyu1, CHENG Jianjun2
1 Institute of Functional Nano and Soft Materials, Soochow University, Suzhou 215123, Jiangsu, China
2 School of Engineering, Westlake University, Hangzhou 310024, China
下载:  全 文 ( PDF ) ( 19812KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚氨基酸是一类天然蛋白质模拟物,可以通过氨基酸-N-羧基环内酸酐开环聚合法制备。聚氨基酸凭借氨基酸结构多样性、独特的自组装结构和构象转变、高生物活性和良好的生物相容性,被广泛应用于生物材料领域。以自动加速、协同共价聚合为代表的开环聚合新方法为聚氨基酸材料的高效制备提供了保障。以α-螺旋、β-折叠聚氨基酸为基本结构单元的聚合物能自组装形成结构规整的纳米材料,为结构与功能仿生及生物应用奠定了基础。聚氨基酸能在酸碱度、光、热及氧化还原等条件下发生构象转变,材料二级结构的变化伴随着物理(如亲疏水性)、化学(如电荷翻转)和生物活性(如细胞毒性)等的改变,为材料适应生物微环境变化和靶向递送等提供了新思路。聚氨基酸材料在抗菌、防污、抗肿瘤、基因递送、组织工程和免疫调节等生物应用领域展示了良好的应用前景。本文重点综述了当前聚氨基酸材料在前沿制备方法、组装结构、构象转变和生物应用四个方面的研究进展,并对其未来发展需要解决的问题进行了展望,以期为聚氨基酸材料的深入研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨方平
宋子元
殷黎晨
唐浩宇
程建军
关键词:  聚氨基酸  开环聚合  自组装  构象转变  生物材料    
Abstract: Synthetic polypeptides from the ring-opening polymerization (ROP) of amino acid N-carboxyanhydrides (NCAs) are a type of natural protein mimics. The unique features of these synthetic polypeptides, including the chemical diversity of amino acids, the unique self-assembly structures and conformation transition, and the desired biological activity and good biocompatibility, enable their broad biological applications. The new ROP method represented by auto-accelerated cooperative covalent polymerization provides a new direction for the efficient preparation of polypeptide materials. Additionally, polypeptides with α-helical or β-sheet conformations can be used as building blocks for self-assembly, forming unique chiral and nanomaterials, which benefit the research on structural and functional biomimetics and biomedical applications. The conformational transitions of polypeptide materials, triggered by pH, light, heat, redox, etc, are always accompanied by the changes in their physical pro-perties (such as hydrophobicity), chemical structures (such as charge reversion), and biological activity (such as cytotoxicity), offering a new strategy for materials to adapt to the changes of biological microenvironment and targeted delivery. As a result, polypeptide materials have shown great potentials in biological applications such as antibacterial, antifouling, antitumor, gene delivery, tissue engineering, and immune regulation. This review offers a retrospection of the research process of synthetic polypeptides materials, which covered advanced preparation methods, assembly structure, conformation transition, and biological applications. In order to provide reference for the further research of synthetic polypeptides, we also raised some important questions for this field.
Key words:  polypeptides    ring-opening polymerization    self-assembly    conformational transition    biomaterials
发布日期:  2022-02-10
ZTFLH:  TB34  
  O63  
基金资助: 国家自然科学基金委面上项目(51873213)
通讯作者:  hytang@suda.edu.cn;chengjianjun@westlake.edu.cn   
作者简介:  杨方平,2018年毕业于山东师范大学化学院,获得理学学士学位。现为苏州大学功能纳米与软物质研究院博士研究生,在唐浩宇和程建军两位导师的联合指导下进行聚氨基酸材料制备与生物学性能研究的相关工作。
唐浩宇,苏州大学功能纳米与软物质研究院副研究员。2008年6月毕业于北京大学化学与分子工程学院,获得理学博士学位。2008年10月至2012年1月先后在美国路易斯安娜州立大学(LSU)和美国伊利诺伊大学厄巴纳-香槟分校(UIUC)从事博士后工作。2019年4月加盟苏州大学功能纳米与软物质研究院开展研究和教学工作。主要研究方向为高分子材料制备、表面改性、抗菌高分子等,以第一作者或通讯作者在Chem. Sci., Macromolecules, Biomacromolecules, Polym. Chem., Macromol. Rapid Commun.等SCI学术期刊发表研究论文70余篇。
程建军,西湖大学工学院院长,材料科学与工程讲席教授、博士研究生导师。于1993年在南开大学获得化学学士学位,于1996年在美国南伊利诺伊大学获得化学硕士学位,于2001年在加州大学圣巴巴拉分校获得材料科学博士学位。毕业后作为资深科学家在Insert Therapeutics工作至2004年,后在麻省理工学院从事博士后研究至2005年,同年就职于美国伊利诺伊大学厄巴纳-香槟分校(UIUC)材料科学与工程系任助理教授,2011年晋升为终身副教授,2015年晋升为该系终身正教授并获得伊利诺伊大学杰出晋升教授奖,2016年晋升为Hans Thurnauer讲席教授。2021年8月起,任西湖大学工学院院长和材料科学与工程讲席教授。程建军教授课题组共发表过文章200余篇, 拥有已获批40余项美国或国际专利。曾获美国国家自然科学基金会青年学者奖和美国国立卫生研究院院长创新奖。研究领域包括高分子化学、多肽、纳米材料和纳米药物、药物递送、癌症靶向技术。程建军教授是英国皇家化学会生物材料科学期刊的主编。他是美国国家发明家科学院院士、美国科学促进会会士、美国医学与生物工程学院会士、美国化学会高分子化学会士。
引用本文:    
杨方平, 宋子元, 殷黎晨, 唐浩宇, 程建军. 聚氨基酸材料的研究进展[J]. 材料导报, 2022, 36(3): 21080287-18.
YANG Fangping, SONG Ziyuan, YIN Lichen, TANG Haoyu, CHENG Jianjun. Research Progress of Synthetic Polypeptides Materials. Materials Reports, 2022, 36(3): 21080287-18.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080287  或          http://www.mater-rep.com/CN/Y2022/V36/I3/21080287
1 Song Z Y, Han Z Y, Lv S X, et al. Chemical Society Review, 2017, 46(21), 6570.
2 Song Z Y, Fu H L, Wang R B, et al. Chemical Society Review, 2018, 47(19), 7401.
3 Rasines Mazo A, Allison-Logan S, Karimi F, et al. Chemical Society Review, 2020, 49(14), 4737.
4 Song Z Y, Tan Z Z, Cheng J J. Macromolecules, 2019, 52(22), 8521.
5 Kricheldorf H R. Angewante Chemie International Edition, 2006, 45(35), 5752.
6 Deming T J. Journal of the American Chemical Society, 1997, 119(11), 2759.
7 Deming T J. Journal of the American Chemical Society, 1998, 120(17), 4240.
8 Baumgartner R, Fu H L, Cheng J J, et al. Nature Chemistry, 2017, 9, 614.
9 Chen C Y, Fu H L, Baumgartner R, et al. Journal of the American Chemical Society, 2019, 141 (22), 8680.
10 Shi Z W, Zhang X, Wang X D, et al. Biomacromolecules, 2020, 21(8), 3468.
11 Lv S X, Kim H, Song Z Y, et al. Journal of the American Chemical Society, 2020, 142(19), 8570.
12 Liu H, Zhang X, Zhao Z Y, et al. Biomaterials Science, 2021, 9(7), 2721.
13 Kramer J R, Deming T J. Biomacromolecules, 2010, 11(12), 3668.
14 Song Z Y, Fu H L, Wang J, et al. Proceedings of the National Academy of Science USA, 2019, 116 (22), 10658.
15 Wang X F, Song Z Y, Tan Z Z, et al. ACS Macro Letters, 2019, 8(11), 1517.
16 Xue T R, Song Z Y, Wang Y Z, et al. Macromolecules, 2020, 53(15), 6589.
17 Shi Z W, Zhang X, Yu Z K, et al. Biomacromolecules, 2021, 22(6), 2373
18 Song Z Y, Fu H L, Baumgartner R, et al. Nature Communitions, 2019, 10, 5470.
19 Xu F, Xue R Z, Yang F P, et al. European Polymer Journal, 2021, 149, 110390.
20 Xia Y C, Song Z Y, Tan Z Z, et al. Nature Communications, 2021, 12, 732.
21 Tan Z Z, Song Z Y, Xue T R, et al. Biomaterials Science, 2021, 9(11), 4120.
22 Zou J, Fan J W, He X, et al. Macromolecules, 2013, 46(10), 4223.
23 Yuan J S, Sun Y L, Wang J Y, et al. Biomacromolecules, 2016, 17(3), 891.
24 Yuan J S, Zhang Y, Li Z Z, et al. ACS Macro Letters, 2018, 7(8), 892.
25 Wu Y M, Zhang D F, Ma P C, et al. Nature Communications, 2018, 9, 5297.
26 Wu Y M, Zhang W W, Zhou R Y, et al. Chinese Journal of Polymer Science, 2020, 38(10), 1131.
27 Zhang Y, Liu R J, Jin H, et al. Communications Chemistry, 2018, 1, 40.
28 Zhang H Y, Nie Y Z, Zhi X M, et al. Chemical Communications, 2017, 53(37), 5155.
29 Zhao W, Lv Y F, Li J, et al. Nature Communications, 2019, 10, 3590.
30 Zhao W, Lv Y F, Li J, et al. Angewante Chemie International Edition, 2021, 60(2), 889.
31 He W J, Tao Y H. Chinese Journal of Chemistry, 2021, 39(8), 2119.
32 Miao Y D, Xie F N, Cen J Y, et al. ACS Macro Letters, 2018, 7(6), 693.
33 Cao J B, Siefker D, Chan B A, et al. ACS Macro Letters, 2017, 6 (8), 836.
34 Siefker D, Williams A Z, Stanley G G, et al. ACS Macro Letters, 2018, 7(10), 1272.
35 Vacogne C D, Wei C X, Tauer K, et al. Journal of the American Chemical Society, 2018, 140(36), 11387.
36 Xu P F, Gao L, Cai C H, et al. Angewante Chemie International Edition, 2020, 59(34), 14281.
37 Wang J, Lu H, Kamat R, et al. Journal of the American Chemical Society, 2011, 133 (33), 12906.
38 Wan Y M, Wang Z N, Sun J, et al. Langmuir, 2016, 32(30), 7512.
39 Liu H, Wang R, Wei J, et al. Journal of the American Chemical Society, 2018, 140(21), 6604
40 Yao Q X, Wu G Q, Hao H, et al. Biomacromolecules, 2021, 22(6), 2563.
41 Shen J Y, Chen C Y, Fu W X, et al. Langmuir, 2013, 29(21), 6271.
42 Ji S F, Xu L L, Fu X H, et al. Macromolecules, 2019, 52(12), 4686.
43 Liu R J, Xu M M, Yan Q. ACS Macro Letters, 2020, 9(3), 323.
44 Jiang J H, Zhang X Y, Fan Z, et al. ACS Macro Letters, 2019, 8(10), 1216.
45 Grazon C, Salas-Ambrosio P, Ibarboure E, et al. Angewante Chemie International Edition, 2020, 59(2), 622.
46 Bonduelle C. Polymer Chemistry, 2018, 9(13), 1517.
47 Lu H, Wang J, Bai Y G, et al. Nature Communications, 2011, 2, 206.
48 Yin L C, Tang H Y, Kim K H, et al. Angewante Chemie International Edition, 2013, 52 (35), 9182.
49 Yuan J S, Zhang Y, Sun Y, et al. Biomacromolecules, 2018, 19(6), 2089.
50 Kramer J R, Deming T J. Journal of the American Chemical Society, 2012, 134(9), 4112.
51 Gharakhanian E G, Bahrun E, Deming T J. Journal of the American Chemical Society, 2019, 141 (37), 14530.
52 Zhu S, Xue R Z, Yu Z K, et al. Biomacromolecules, 2021, 22(3), 1211.
53 Song Z Y, Mansbach R A, He H, et al. Nature Communications, 2017, 8, 92.
54 Song Z Y, Tan Z Z, Zheng X T, et al. Polymer Chemistry, 2020, 11 (8), 1445.
55 Xiong M H, Lee M W, Mansbach R A, et al. Proceedings of the National Academy of Science USA, 2015, 112 (43), 13155.
56 Ng V W L, Ke X, Lee A L Z, et al. Advanced Materials, 2013, 25(46), 6730.
57 Xiong M H, Bao Y, Xu X, et al. Proceedings of the National Academy of Science USA, 2017, 114 (48), 12675.
58 Xiong M H, Han Z Y, Song Z Y, et al. Angewante Chemie International Edition, 2017, 56 (36), 10826.
59 Jiang Y J, Han M, Bo Y, et al. ACS Central Science, 2020, 6 (12), 2267.
60 Lam S J, O'Brien-Simpson N M, Pantarat N, et al. Nature Microbiology, 2016, 1, 16162.
61 Jiang W N, Xiao X M, Wu Y M, et al. Biomaterials Science, 2020, 8(2), 739.
62 Zhang W W, Wu Y M, Liu L Q, et al. Journal of Materials Chemistry B, 2021, 9(25), 5092.
63 Sun H, Hong Y X, Xi Y J, et al. Biomacromolecules, 2018, 19(6), 1701.
64 Xi Y J, Song T, Tang S Y, et al. Biomacromolecules, 2016, 17(12), 3922.
65 Wang M Z, Zhou C C, Chen J, et al. Bioconjugate Chemistry, 2015, 26 (4), 725.
66 Yang Y Y, Chen L S, Sun M, et al. Chinese Journal of Polymer Science, DOI: 10.1007/s10118-021-2593-0.
67 Gao Q, Yu M, Su Y J, et al. Acta Biomaterialia, 2017, 51, 112.
68 Gao Q, Li P, Zhao H Y, et al. Polymer Chemistry, 2017, 8(41), 6386.
69 Gao Q, Feng T, Huang D N, et al. Biomaterials Science, 2019, 8(1), 278.
70 Gao Q, Li X, Yu W J, et al. ACS Applied Materials & Interfaces, 2020, 12(2), 2999.
71 Lu Z Y, Wu Y M, Cong Z H, et al. Bioactive Materials, 2021, 6 (12), 4531.
72 Zhang C, Yuan J S, Lu J H, et al. Biomaterials, 2018, 178, 728.
73 Zhang C, Lu J H, Hou Y Q, et al. ACS Applied Materials & Interfaces, 2018, 10(20), 17463.
74 Chen S F, Cao Z Q, Jiang S Y. Biomaterials, 2009, 30(29), 5892.
75 Ding J X, Chen J J, Li D, et al. Journal of Materials Chemistry B, 2013, 1(1), 69.
76 Chen J J, Ding J X, Zhang Y, et al. Polymer Chemistry, 2015, 6(3), 397.
77 Lv S X, Wu Y C, Cai K M, et al. Journal of the American Chemical So-ciety, 2018, 140(4), 1235.
78 Ding J X, Shi F H, Xiao C S, et al. Polymer Chemistry, 2011, 2(12), 2857.
79 Shi F H, Ding J X, Xiao C S, et al. Journal of Materials Chemistry, 2012, 22(28), 14168.
80 Feng X R, Xu W G, Xu X R, et al. Science China Chemistry, 2020, 64(2), 293.
81 Yu H Y, Tang Z H, Zhang D W, et al. Journal of Control Release, 2015, 205, 89.
82 Yang S C, Tang Z H, Hu C Y, et al. Advanced Materials, 2019, 31(11), 1805955.
83 Hou Y Q, Zhou Y, Wang H, et al. Journal of the American Chemical Society, 2018, 140(3), 1170.
84 Shen W, Zhang Y, Wan P Q, et al. Advanced Materials, 2020, 32 (36), 2001108.
85 Lee M W, Han M, Bossa G V, et al. ACS Nano, 2017, 11(3), 2858.
86 Uchida H, Miyata K, Oba M, et al. Journal of the American Chemical Society, 2011, 133(39), 15524.
87 Gabrielson N P, Lu H, Yin L C, et al. Angewante Chemie International Edition, 2012, 51(5), 1143.
88 Yin L C, Song Z Y, Kim K H, et al. Biomaterials, 2013, 34(9), 2340.
89 Yen J, Ying H Z, Wang H, et al. ACS Biomaterials Science & Enginee-ring, 2016, 2(3), 326.
90 Wang H X, Song Z Y, Lao Y H, et al. Proceedings of the National Aca-demy of Science USA, 2018, 115 (19), 4903.
91 Tang H Y, Yin L C, Kim K H, et al. Chemical Science, 2013, 4 (10), 3839.
92 Zhang R J, Zheng N, Song Z Y, et al. Biomaterials, 2014, 35(10), 3443.
93 He H, Zheng N, Song Z Y, et al. ACS Nano, 2016, 10(2), 1859.
94 Li F F, Li Y J, Zhou Z C, et al. ACS Applied Materials & Interfaces, 2017, 9(28), 23586.
95 Graham B, Bailey T L, Healey J R J, et al. Angewante Chemie International Edition, 2017, 56 (50), 15941.
96 Sun Y L, Liu J, Li Z B, et al. ACS Applied Materials & Interfaces, 2021, 13 (16), 18454.
97 Sun Y T, Wollenberg A L, O'Shea T M, et al. Journal of the American Chemical Society, 2017, 139 (42), 15114.
98 Sun Y T, Deming T J. ACS Macro Letters, 2019, 8, 553.
99 Teng L, Shao Z, Bai Q, et al. Advanced Functional Materials, 2021, 31, 2105628.
100 Zhou M N, Delaveris C S, Kramer J R, et al. Angewante Chemie International Edition, 2018, 57 (12), 3137.
101 Delaveris C S, Chiu S H, Riley N M, et al. Proceedings of the National Academy of Science USA, 2021, 118 (3), e2012408118.
102 Delaveris C S, Wilk A J, Riley N M, et al. ACS Central Science, 2021, 7(4), 650.
[1] 刘佳, 牛家嵘, 金欣, 朱正涛, 王闻宇. 淀粉类可吸收止血材料的研究进展[J]. 材料导报, 2022, 36(3): 21100136-8.
[2] 许秀娟, 杨凤怡, 黄皖卿, 祝雨虹, 梁筱峥, 刘潇钦, 晏梅, 周航, 李晓洲, 赵晚露, 艾华. 立足行业需求,助力生物材料创新发展[J]. 材料导报, 2022, 36(3): 22010204-7.
[3] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[4] 薛敏, 张祥, 刘璐, 常文浩, 李蓓蓓. 双组分超分子凝胶材料的形成机理及流变性能[J]. 材料导报, 2021, 35(8): 8201-8206.
[5] 朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
[6] 卢爽, 刘琳, 谢锦印, 武亚琪, 邢锦娟. 2-氨基苯并咪唑缩对甲基苯甲醛席夫碱的合成及缓蚀性能[J]. 材料导报, 2021, 35(20): 20195-20199.
[7] 王艳坤. 四氧化三铁/石墨烯纳米复合材料的静电自组装制备及储锂性能[J]. 材料导报, 2021, 35(16): 16008-16014.
[8] 龙涛, 杨新国, 李丝雨, 王影, 毛凤余. 二元溶剂体系对含仲胺基团苝酰亚胺衍生物自组装与光电性能的影响[J]. 材料导报, 2021, 35(10): 10176-10183.
[9] 冯伟丽, 康兴隆, 柳妍, 鲁哲宏, 刘保英, 房晓敏, 丁涛. 层层自组装改性剑麻纤维填充聚丙烯复合材料性能研究[J]. 材料导报, 2021, 35(10): 10211-10215.
[10] 何祖宇, 谢江辉, 李普旺, 屈云慧, 杨子明, 于丽娟, 王超, 刘运浩, 姚全胜, 周闯. 两亲性壳聚糖自组装纳米微球的制备及抗真菌性能研究[J]. 材料导报, 2020, 34(Z2): 501-506.
[11] 赖宇明, 高雅, 要秀全. 纳米尺度自组装相互作用力研究进展[J]. 材料导报, 2020, 34(7): 7091-7098.
[12] 范治平, 程萍, 张德蒙, 王文丽, 韩军. 天然高分子基刺激响应性智能水凝胶研究进展[J]. 材料导报, 2020, 34(21): 21012-21025.
[13] 付念, 谷雨, 郭雨, 张建飞, 陈道俊, 刘啸宇, 丛日东. Fe掺杂AlN纳米线/三维片层复合分级纳米结构的自组装生长[J]. 材料导报, 2020, 34(12): 12036-12039.
[14] 郭雨晴, 张菁, 李颂. 层层自组装技术在组织工程领域的研究进展[J]. 材料导报, 2019, 33(Z2): 538-541.
[15] 王怀基, 董海青. 还原响应的白蛋白纳米颗粒负载甲氨蝶呤用于抗肿瘤治疗[J]. 材料导报, 2019, 33(Z2): 547-552.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed