Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21030320-5    https://doi.org/10.11896/cldb.21030320
  高分子与聚合物基复合材料 |
聚合物刷在溶剂中的自组装行为及弹性响应
李慧姝1,*, 卢豪2,*, 顾宇红1
1 苏州经贸职业技术学院信息技术学院,江苏 苏州 215009
2 苏州科技大学材料科学与工程学院,江苏 苏州 215009
Self-assembly Behavior and Elastic Response of Polymer Brushes in Solvents
LI Huishu1,*, LU Hao2,*, GU Yuhong1
1 School of Information Technology, Suzhou Institute of Trade & Commerce, Suzhou 215009, Jiangsu, China
2 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
下载:  全 文 ( PDF ) ( 6357KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过密度场化后粒子表象下的Monte Carlo模拟得到半柔性均聚物刷在不良溶剂中的自组装形貌,发现半柔性刷在不良溶剂中随着链刚性的增强,链自由端产生拉伸,链刷高度明显增加,同时链刷内部出现空洞,顶部出现“搭桥”行为。通过在聚合物刷的顶部进行压板的方法来计算聚合物刷的表面弹性,这种计算表面弹性的新方法省去了场论模拟中复杂的理论推导过程,结果显示在受压迫后聚合物刷的弹性表现出先缓慢上升后急剧增长的趋势。在良溶剂环境下,在受到相同压迫时,柔性聚合物刷的弹性响应能力比半柔性聚合物刷更强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李慧姝
卢豪
顾宇红
关键词:  半柔性聚合物刷  弹性响应  Monte  Caolo模拟  自组装    
Abstract: This work use Monte Carlo simulation which relies on particle-based and density field to get self-assemble morphology of semi-flexible polymer brushes in poor solvents. It's revealed that in poor solvent, the free ends of the chains are stretched and the height of the chain brushes increases significantly as the chain rigidity enhances. Meanwhile, the internal cavity of the chain brushes can be observed and the ‘bridging’ behavior appears at the top. To further study the elastic response of polymer brushes, an alternative way is offered to calculate the surface elasticity of polymer brushes by pressing the weight plate on the top of polymer brushes, by virtue of which a complex theoretical derivation process on field simulation is saved. The results show that the elasticity of the polymer brush rise slowly at first but then varies sharply under compression. Results also display that the flexible polymer brushes take on better elastic response than semi-flexible ones under the same pressure in good solvent.
Key words:  semi-flexible polymer brushes    elastic response    Monte Carlo simulation    self-assembly
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  O63  
  O64  
  O469  
基金资助: 国家自然科学基金(51802210);江苏省高等学校自然科学研究面上项目(22KJB140014);江苏省双创博士(JSSCBS20210807);中国博士后科学基金 (2019M651935);2020 年苏州经贸职业技术学院院级项目(YJ-ZK2012)
通讯作者:  *lihuishu1019@126.com;luhaoshaobo@163.com   
作者简介:  李慧姝,2012年6月毕业于苏州大学,获得理学学士学位,2017年12月毕业于苏州大学,获得理学博士学位。2019—2020年在苏州大学软凝聚态交叉研究中心从事博士后研究。目前在苏州经贸职业技术学院担任讲师。主要从事聚合物结构与性能、活性物质与聚合物混合体系的研究。
卢豪,2012年6月毕业于苏州大学,获得理学学士学位,2017年6月毕业于苏州大学,获理学博士学位。于2015年至2016年在日本国家材料科学研究所联合培养学习。主要从事光电转换领域的研究。
引用本文:    
李慧姝, 卢豪, 顾宇红. 聚合物刷在溶剂中的自组装行为及弹性响应[J]. 材料导报, 2022, 36(15): 21030320-5.
LI Huishu, LU Hao, GU Yuhong. Self-assembly Behavior and Elastic Response of Polymer Brushes in Solvents. Materials Reports, 2022, 36(15): 21030320-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030320  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21030320
1 Wang Shengqin, Jing Benxin, Zhu Yingxi. Journal of Polymer Science Part B-Polymer Physics, 2014, 52(2), 85.
2 Hou Wangmeng, Liu Yingze, Zhao Hanying. Chempluschem, 2020, 85(5), 998.
3 Tang S D, Jonathan M H, Zhao B, et al. Polymer, 2016, 90(4), 9.
4 Ma Xin, Chen Cangyi, Yang Yingzi, et al. Soft Matter, 2014, 10(32), 6005.
5 Matsen M W. Journal of Chemical Physics, 2005, 122(14), 144904.
6 Taylor W, Jones R A L. Langmuir, 2010, 26(17), 13954.
7 Jurate Jonikaite-Svegzdiene, Alina Kudresova, Sarunas Paukstis, et al. Polymer Chemistry, 2017, 8(36), 5621.
8 Edgecombe S R, Gardiner J M, Matsen M W. Macromolecules, 2002, 35(16), 6475.
9 Ji Shengxiang, Liu Guoliang, Zheng Fan, et al. Advanced Materials, 2008, 20(16), 3054.
10 Wang Li, Zhong Tianping, Zhou Jian. Molecular Simulation, 2017, 43(13-16), 1322.
11 Mikhail M, Roman S, Evgeny K, et al. ACS Nano, 2008, 2(1), 41.
12 Edwin C J, Joshua D W, Grant B W, et al. Langmuir, 2020, 36(21), 5765.
13 Andrey M, Kurt B. Soft Matter, 2014, 10(21), 3783.
14 Michael S, Chin M H, Zachary U, et al. Faraday Discussions, 2016, 186, 17.
15 Hua Yunfeng, Deng Zhenyu, Zhang Linxi. Frontiers of Physics, 2017, 12(3), 128701.
16 Spirin L, Galuschko A, Binder K, et al. Physical Review Letters, 2011, 106(16), 168301.
17 Piotr P, Jeremiasz K J, Krzysztof M. Polymer, 2019, 173(31), 190.
18 Chen Yantao, Chen Jeff. Journal of Polymer Science Part B-Polymer Phy-sics, 2012, 50(1), 21.
19 Qiu Wenjuan, Li Baohui, Wang Qiang. Soft Matter, 2018, 14(10), 1887.
20 Chen Cangyi, Tan Ping, Qiu Feng, et al. Journal of Chemical Physics, 2015, 142(12), 124904.
21 François A D, Kang H M, Kostas C D, et al. Macromolecules, 2008, 41(13), 4989.
22 Kurt B, Wolfgang P. Macromolecules, 2008, 41(13), 4537.
23 Kaoru O, Takashi S, Taisuke M, et al. Macromolecules, 2007, 40(3), 723.
24 Jonas R, Labrini A, Sergei A E, et al. Scientific Reports, 2015, 5, 15854.
25 Hu Wenbing. Polymer Bulletin, 2000, 6(2), 97(in Chinese).
胡文兵. 高分子通报, 2000, 6(2), 97.
[1] 张壹霖, 腾凡, 高庆, 杨婷婷. 基于RAFT调控的聚合诱导自组装研究进展[J]. 材料导报, 2022, 36(Z1): 22030070-5.
[2] 杨方平, 宋子元, 殷黎晨, 唐浩宇, 程建军. 聚氨基酸材料的研究进展[J]. 材料导报, 2022, 36(3): 21080287-18.
[3] 刘均澔, 李文兵, 龚韬, 魏婉婷, 钱坤. 形状记忆微/纳米图案的设计、应用和发展[J]. 材料导报, 2022, 36(23): 20100218-10.
[4] 武彧, 刘家成. 不同类型锌卟啉自组装染料敏化太阳能电池[J]. 材料导报, 2021, 35(z2): 479-482.
[5] 薛敏, 张祥, 刘璐, 常文浩, 李蓓蓓. 双组分超分子凝胶材料的形成机理及流变性能[J]. 材料导报, 2021, 35(8): 8201-8206.
[6] 朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
[7] 卢爽, 刘琳, 谢锦印, 武亚琪, 邢锦娟. 2-氨基苯并咪唑缩对甲基苯甲醛席夫碱的合成及缓蚀性能[J]. 材料导报, 2021, 35(20): 20195-20199.
[8] 王艳坤. 四氧化三铁/石墨烯纳米复合材料的静电自组装制备及储锂性能[J]. 材料导报, 2021, 35(16): 16008-16014.
[9] 龙涛, 杨新国, 李丝雨, 王影, 毛凤余. 二元溶剂体系对含仲胺基团苝酰亚胺衍生物自组装与光电性能的影响[J]. 材料导报, 2021, 35(10): 10176-10183.
[10] 冯伟丽, 康兴隆, 柳妍, 鲁哲宏, 刘保英, 房晓敏, 丁涛. 层层自组装改性剑麻纤维填充聚丙烯复合材料性能研究[J]. 材料导报, 2021, 35(10): 10211-10215.
[11] 何祖宇, 谢江辉, 李普旺, 屈云慧, 杨子明, 于丽娟, 王超, 刘运浩, 姚全胜, 周闯. 两亲性壳聚糖自组装纳米微球的制备及抗真菌性能研究[J]. 材料导报, 2020, 34(Z2): 501-506.
[12] 赖宇明, 高雅, 要秀全. 纳米尺度自组装相互作用力研究进展[J]. 材料导报, 2020, 34(7): 7091-7098.
[13] 付念, 谷雨, 郭雨, 张建飞, 陈道俊, 刘啸宇, 丛日东. Fe掺杂AlN纳米线/三维片层复合分级纳米结构的自组装生长[J]. 材料导报, 2020, 34(12): 12036-12039.
[14] 郭雨晴, 张菁, 李颂. 层层自组装技术在组织工程领域的研究进展[J]. 材料导报, 2019, 33(Z2): 538-541.
[15] 王怀基, 董海青. 还原响应的白蛋白纳米颗粒负载甲氨蝶呤用于抗肿瘤治疗[J]. 材料导报, 2019, 33(Z2): 547-552.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed