Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21090270-6    https://doi.org/10.11896/cldb.21090270
  金属与金属基复合材料 |
激光熔覆同路送丝光路结构设计及分析
李素丽1,*, 马恺悦1, 冯高磊1, 熊杰1, 李连强2
1 西安科技大学机械工程学院,西安 710054
2 兵器工业卫生研究所安全评价研究室,西安 710065
Design and Analysis of the Coaxial Laser Cladding Wire Feeding Structure Optical Path
LI Suli1,*, MA Kaiyue1, FENG Gaolei1, XIONG Jie1, LI Lianqiang2
1 Xi'an University of Science and Technology,School of Mechanical Engineering, Xi'an 710054, China
2 Institute of Occupational Health of Ordnance Industry, Division of Safety Research, Xi'an 710065, China
下载:  全 文 ( PDF ) ( 6784KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 根据同路送丝激光熔覆技术的特点,分别对环形光束方案、一分三光束方案和一分四光束方案进行分析。对比不同设计方案优劣,并对光路汇聚效果进行有限元分析。结果表明,采用抛物面镜面和平面镜面时,环形光束方案和一分三光束方案对光束的汇聚效果均强于一分四光束方案;对于焦点位置的能量,采用抛物面镜面强于平面镜方案。一分四光束方案由于对激光束的汇聚效果较差且结构复杂,不符合实际应用需求;环形光束方案对激光束的汇聚效果和焦点能量与一分三光束方案相差不大;但一分三光束方案可在避免光丝干涉的同时使送丝路径布局更加合理,稳定送丝过程。综上,一分三抛物面方案为同路送丝激光熔覆头光路设计的最佳方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李素丽
马恺悦
冯高磊
熊杰
李连强
关键词:  激光熔覆  同路送丝  光路设计  汇聚效果    
Abstract: According to the characteristics of the coaxial wire feeding laser cladding technology, the annular beam scheme, three beams scheme, and four beams scheme were analyzed respectively, the advantages and disadvantages of different design schemes were compared, and the finite element analysis of the optical path convergence effect was carried out. The results show that when using a parabolic mirror and planar mirror, the convergence effect of the annular beam scheme and three beams scheme is stronger than that of the four beams scheme. The parabolic mirror is stronger than the plane mirror scheme for the focus position energy. Due to the laser beam's poor convergence effect and complex structure, the four beams scheme does not meet the practical application requirements. The convergence effect and focus of the energy of the annular beam scheme are not much different from the three beams scheme. However, when designing the wire feeding path, the three beams scheme can avoid the interference of the optical wire and make the wire feeding path layout more reasonable and stabilize the wire feeding process. In conclusion, the three beams paraboloid scheme is the best scheme for the design of a laser cladding head optical path with the coaxial wire feeding.
Key words:  laser cladding    coaxial wire feeding    optical path design    convergence effect
发布日期:  2023-03-27
ZTFLH:  TG47  
基金资助: 国家重点实验室开放课题研究基金(sklms2021016);陕西省教育厅2022年度服务地方专项科研计划(22JC053)
通讯作者:  *李素丽,西安科技大学机械工程系副教授。2005年7月、2008年7月分别于中国太原中北大学获得机械工程学士、硕士学位,2016年在西安交通大学获得机械工程博士学位。目前主要从事机械制造和增材制造等方面的研究。发表论文50余篇,包括Rare Metal Materials and Engineering、Journal of Rare Metal Materials and Engineering、Journal of Appl.Phys.A等。563456137@qq.com   
引用本文:    
李素丽, 马恺悦, 冯高磊, 熊杰, 李连强. 激光熔覆同路送丝光路结构设计及分析[J]. 材料导报, 2023, 37(6): 21090270-6.
LI Suli, MA Kaiyue, FENG Gaolei, XIONG Jie, LI Lianqiang. Design and Analysis of the Coaxial Laser Cladding Wire Feeding Structure Optical Path. Materials Reports, 2023, 37(6): 21090270-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090270  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21090270
1 Chen Xiaoming, Wang Haijin, Zhou Xialiang, et al. Materials Reports, 2018, 32(S1), 341 (in Chinese).
陈小明, 王海金, 周夏凉, 等. 材料导报, 2018, 32(S1), 341.
2 Xu Lei, Du Yanbin, Zhang Lei. Journal of Chongqing Technology and Business University(Natural Science Edition), 2021, 38(1), 1(in Chinese)
许磊, 杜彦斌, 张磊. 重庆工商大学学报(自然科学版), 2021, 38(1), 1.
3 Yang Meichen, Luo Hao, Song Jingjing, et al. Journal of Chongqing University of Technology(Natural Science), 2022, 36(3), 112(in Chinese).
杨美晨, 罗豪, 宋晶晶等. 重庆理工大学学报(自然科学), 2022, 36(3), 112.
4 Zhu Ping. Study on inside-laser coaxial wire feeding process of laser cladding and single beads prototyping. Master's Thesis, Soochow University,China, 2013 (in Chinese).
朱萍. 同轴送丝激光熔覆工艺研究及薄壁墙成形堆积. 硕士学位论文, 苏州大学, 2013.
5 Yang Ning, Yang Fan. Material Heat Treatment Technology, 2010, 4(8), 118 (in Chinese).
杨宁, 杨帆. 材料热处理技术, 2010, 4(8), 118.
6 Kovalev O, Bedenko D, Zaitsev A. Applied Mathematical Modelling, 2018, 57, 339.
7 Duocastella M, Arnold C B. Laser and Photonics Reviews, 2012, 6(5), 607.
8 Yao Jianhua, Zhang Wei. Laser and Optoelectronics Progress, 2006, 43(4), 8(in Chinese).
姚建华, 张伟. 激光与光电子学进展, 2006, 43(4), 8.
9 Zhong Minlin, Liu Wenjin. Chinese Journal of Lasers, 2002, 29(11), 1031(in Chinese).
钟敏霖, 刘文今. 中国激光, 2002, 29(11), 1031.
10 Ma Zhuang, Gu Lin, Li Zhichao. Hot Working Y-Z, 2010, 39(6), 83(in Chinese).
马壮, 谷琳, 李智超. 热加工Y-Z, 2010, 39(6), 83.
11 Zhang Jiping, Shi Shihong, Jiang Weiwei et al. Chinese Journal of Lasers, 2019, 46(10), 122 (in Chinese).
张吉平, 石世宏, 蒋伟伟, 等. 中国激光, 2019, 46(10), 122.
12 Wang Han, Zhou Weimin, Min Guoquan, et al. China Metal Bulletin, 2018(12), 248(in Chinese).
王涵, 周伟民, 闵国全, 等. 中国金属通报, 2018(12), 248.
13 Liu Lulu, Sun Ronglu. Hot Working Technology, 2007, 36(11), 59(in Chinese).
刘录录, 孙荣禄. 热加工工艺, 2007, 36(11), 59.
14 Li Xiaowei, Zhang Chunhua, Zhang Song, et al. Laser Journal, 2007(2), 1(in Chinese).
李晓薇, 张春华, 张松, 等. 激光杂志, 2007(2), 1.
15 Zhu Gangxian, Shi Tuo, Fu Geyan, et al. Applied Laser, 2013, 33(4), 381(in Chinese).
朱刚贤, 石拓, 傅戈雁, 等. 应用激光, 2013, 33(4), 381.
16 Shi Shihong, Fu Geyan, Li Long, et al. Chinese Journal of Lasers, 2010, 37(1), 266(in Chinese).
石世宏, 傅戈雁, 李龙, 等. 中国激光, 2010, 37(1), 266.
17 Kelbassa J, Gasser A, Bremer J, et al. Journal of Laser Applications, 2019, 31(2), 022320.
18 Ji Shaoshan, Liu Fan, Fu Geyan, et al. Surface Technology, 2019, 48(4), 285(in Chinese).
吉绍山, 刘凡, 傅戈雁, 等. 表面技术, 2019, 48(4), 285.
19 Liu Yancong, Ma Li'an, Li Jitao, et al. Hot Working Technology, 2015, 44(10), 176(in Chinese).
刘衍聪, 马立安, 李继涛, 等. 热加工工艺, 2015, 44(10), 176.
20 Kovalenko V, Yao J, Zhang Q, et al. Procedia Cirp, 2016, 42, 96.
21 Zhang Y, Jin Y, Chen Y, et al. Materials, 2021, 14(18), 5196.
22 Ji S, Liu F, Shi T, et al. Chinese Journal of Mechanical Engineering, 2021, 34(45), 22.
[1] 侯锁霞, 赵江昆, 李强, 何丽娜, 张好强. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(Z1): 22030105-4.
[2] 谷米, 孙荣禄, 牛伟, 郝文俊, 左润燕. 硼铁粉含量对激光熔覆AlCoCrFeNi高熵合金涂层性能及形貌的影响[J]. 材料导报, 2022, 36(8): 20120230-5.
[3] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[4] 王伟, 孙文磊, 张志虎, 于江通, 黄海博, 王杨宵, 肖奇. 激光二次扫描熔覆涂层组织演变规律及数值模拟研究[J]. 材料导报, 2022, 36(2): 20090204-7.
[5] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[6] 张春芝, 尚希昌, 孙晟瑄, 单美琳, 王灿明, 崔洪芝. 激光熔覆高性能Fe基非晶涂层的研究进展[J]. 材料导报, 2022, 36(15): 21020101-8.
[7] 种振曾, 孙耀宁, 程旺军, 韩晨阳, 苏才津, 娜菲沙·迪力夏提, 樊子龙. 纳米WC对AlCoCrFeNi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2022, 36(14): 22030230-6.
[8] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[9] 侯锁霞, 任呈祥, 吴超, 赵江昆, 张舵, 张好强. 激光熔覆层裂纹的产生和抑制方法[J]. 材料导报, 2021, 35(Z1): 352-356.
[10] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[11] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[12] 张彦超, 韦朋余, 朱强, 赵文涛, 李天庆, 曾庆波. 316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能[J]. 材料导报, 2021, 35(8): 8121-8126.
[13] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[14] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.
[15] 李英, 李平. 激光熔覆制备抗冲蚀磨损镍基复合涂层的研究进展[J]. 材料导报, 2021, 35(15): 15162-15168.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed