Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21020101-8    https://doi.org/10.11896/cldb.21020101
  金属与金属基复合材料 |
激光熔覆高性能Fe基非晶涂层的研究进展
张春芝1,*, 尚希昌1, 孙晟瑄1, 单美琳1, 王灿明1, 崔洪芝1,2
1 山东科技大学材料科学与工程学院,山东 青岛266590
2 中国海洋大学材料科学与工程学院,山东 青岛266100
Research Progress of Laser-clad High-performance Fe-based Amorphous Coatings
ZHANG Chunzhi1,*, SHANG Xichang1, SUN Shengxuan1, SHAN Meilin1, WANG Canming1, CUI Hongzhi1,2
1 School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
2 School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China
下载:  全 文 ( PDF ) ( 2619KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 非晶合金以其优异的力学、物理和化学性能引起业界关注。基于大量的成分设计和工艺研究,科研人员探索出了一系列具有较强玻璃形成能力的合金体系和各种制备手段。其中,具有极大工业应用潜力的是材料成本低、自然资源丰富的铁基非晶合金及其冷却速率快、成形性能好的激光熔覆涂层制备工艺。国内外学者针对高性能Fe基非晶涂层的制备,开展了大量研究工作,并取得了丰硕的成果。针对非晶合金体系优化,科研人员总结性地提出了非晶合金成分设计的多个经验原则,并探讨了微合金化的作用机理;Fe基非晶涂层初期工业应用潜力表现在耐腐蚀性和耐磨性方面,在激光熔覆非晶涂层的研发过程中,研究人员创造性地使用了各种各样的工艺辅助手段,为高力学性能铁基非晶涂层的制备提供了思路,扩大了其在复杂环境中的应用潜力。本文对近几年激光熔覆Fe基非晶涂层合金体系、性能及制备等方面的研究进展进行了归纳总结,分析了非晶涂层目前研究存在的主要问题与发展方向,为高性能Fe基非晶涂层的制备和应用提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张春芝
尚希昌
孙晟瑄
单美琳
王灿明
崔洪芝
关键词:  激光熔覆  铁基非晶涂层  工艺  性能    
Abstract: Amorphous alloys have attracted the concern due to their excellent mechanical, physical and chemical properties. Series of alloy systems with strong glass forming ability and various fabrication approaches have been developed based on the enormous composition design and process investigation. Among them, the Fe-based amorphous alloy with low material cost and abundant natural resources as well as the laser technology with a fast cooling rate and excellent coating bonding shows great potential in industrial application. Targeting at the high performance of Fe-based amorphous coating, much work has been carried out with fruitful results achieved. Some design principles have been proposed for the alloy system design and the role of some elements has been discussed. Fe-based amorphous coating has been primarily studied on corrosion resistance, wear resistance and so on. In the preparation of amorphous coatings by laser cladding, a variety of auxiliary methods were used creatively to facilitate the improvement of Fe-based amorphous coatings. The previous work provides idea for high-performance Fe-based amorphous coating and widens the application potential in complex environment.
In this article, the development of the alloy system, properties (corrosion resistance, wear resistance, etc.) and fabrication (process modification, parameter optimization, etc.) for laser-clad Fe-based amorphous coating were summarized. Also, the major problems in the current investigation and prospective research were discussed, and a reference for the perparation and application of high-performance Fe-based amorphous coatings was provided.
Key words:  laser cladding    Fe-based amorphous coating    process    property
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TG178  
基金资助: 国家自然科学基金(51801114;51971121);山东省重点研发计划项目(2019JZZY010360);山东省自然科学基金(ZR201910250230)
通讯作者:  *czzhang@sdust.edu.cn   
作者简介:  张春芝,山东科技大学材料科学与工程学院副教授、硕士研究生导师。2011年在山东大学材料科学与工程学院材料加工工程专业获得工学博士学位。目前主要研究领域为耐磨蚀非晶纳米晶涂层及高性能铝合金连接。近年来发表相关论文近20篇。
引用本文:    
张春芝, 尚希昌, 孙晟瑄, 单美琳, 王灿明, 崔洪芝. 激光熔覆高性能Fe基非晶涂层的研究进展[J]. 材料导报, 2022, 36(15): 21020101-8.
ZHANG Chunzhi, SHANG Xichang, SUN Shengxuan, SHAN Meilin, WANG Canming, CUI Hongzhi. Research Progress of Laser-clad High-performance Fe-based Amorphous Coatings. Materials Reports, 2022, 36(15): 21020101-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020101  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21020101
1 Trexler M M, Thadhani N N. Progress in Materials Science, 2010, 55, 759.
2 Suryanarayana C, Inoue A. International Materials Reviews, 2013, 58, 131.
3 Li Y, Zhang C, Xing W, et al. ACS Applied Materials Interfaces, 2018, 10, 43144.
4 Johnson W L. MRS Bulletin, 1999, 24, 42.
5 Si J J, Wu Y D, Wang T, et al. Applied Surface Science, 2018, 445, 496.
6 Lu Z P, Liu C T, Thompson J R, et al. Physical Review Letters, 2004, 92 (24), 245503.
7 Chen Q, Zhang D, Shen J, et al. Journal of Alloys and Compounds, 2007, 427(1-2), 190.
8 Bergmann H W, Mordike B L. Journal of Materials Science, 1981, 16,863.
9 Sorescu M, Knobbe E T. Journal of Materials Research, 1993, 8(12), 3078.
10 Rixecker G, Schaaf P, Gonser U. Journal of Physics: D Applied Physics, 1993, 26(5), 870.
11 Skulkina N A, Gorlanova M A, Ivanov O A, et al. Fizika Metallov i Me-tallovedenie, 1997, 83(5), 54.
12 Chen S Y, Liu C S, Zhou L, et al. Journal of Iron and Steel Research (International), 2005, 12(5), 58.
13 Zheng B, Zhou Y, Smugeresky J E, et al. Metallurgical and Materials Transactions A, 2009, 40A, 1235.
14 Balla V K, Bandyopadhyay A. Surface and Coatings Technology, 2010, 205 (7), 2661.
15 Zhang G R, Bao Y, Ma Q L, et al. Advanced Materials Research, 2011, 287-290, 2351.
16 Fu T, Ye F X, Wei H H, et al. Rare Metal Materials and Engineering, 2012, 41 (S1), 407.
17 Cui C, Ye F, Song G. Surface and Coatings Technology, 2012, 206(8-9), 2388.
18 Mojaver R, Mojtahedi F, Shahverdi H R, et al. Applied Surface Science, 2013, 264, 176.
19 Sahasrabudhe H, Bandyopadhyay A. Surface and Coatings Technology, 2014, 240, 286.
20 Liu X M, Yang R, Du H L, et al. Thin Solid Films, 2017, 636, 15.
21 Liu L, Zhang C. Thin Solid Films, 2014, 561, 70.
22 Yao J H, Hostert C, Music D, et al. Scripta Mater, 2012, 67(2), 181.
23 Ye X Y, Shin Y C. Surface and Coatings Technology, 2014, 239, 34.
24 Zhang P L, Yao C W, Ding M,et al. Welding & Joining, 2009, 5, 19.
25 Huang F, Kang J J, Yue W,et al. Thermal Spray Technology, 2019, 28, 842.
26 Zhou Z, Wang L, He D H. Journal of Thermal Spray Technology, 2011(20), 344.
27 Kobayashi A, Yano S, Kimura H, et al. Materials Science and Enginee-ring B, 2008, 148, 110.
28 Yang Y, Zhou G Z, Ma H D, et al. Materials and Design, 2016, 110, 332.
29 Gu Y F, Liu C H, Li G, et al. Electric Welding Machine, 2019, 49(5), 43 (in Chinese).
顾玉芬, 刘琛珩, 李广, 等. 电焊机, 2019, 49(5), 43.
30 Zhong M L, Liu W J, Yao K F, et al. Acta Metallrugica Sinica, 1997, 33(4), 413(in Chinese).
钟敏霖, 刘文今, 姚可夫, 等. 金属学报. 1997, 33(4), 413.
31 Wu X L, Hong Y S. Surface and Coatings Technology, 2001, 141, 141.
32 Zhang P L, Yan H, Yao C W,et al. Surface and Coatings Technology, 2011, 206, 1229.
33 Zhu Q J, Zou Z D, Wang X H,et al. Transactions of the China Welding Institution, 2008, 29(2), 57(in Chinese).
朱庆军, 邹增大, 王新洪, 等. 焊接学报, 2008, 29(2), 57.
34 Zhu Q J, Wang X H, Qu S Y,et al. Surface Engineering, 2009, 25, 201.
35 Wang Y F, Li L, Lu Q L,et al. Chinese Journal of Lasers, 2011, 38(6), 0603017(in Chinese).
王彦芳, 栗荔, 鲁青龙, 等. 中国激光, 2011, 38(6), 0603017.
36 Lu Q L, Wang Y F, Xiao L J, et al. Chinese Journal of Lasers, 2013, 2, 116.
37 Liu W Y, Hou Y, Liu C, et al. Surface and Coatings Technology, 2015, 270, 33.
38 Wang Q Y, Xi Y C, Zhao Y H, et al. Materials Characterization, 2017, 127, 239.
39 Lu Y Z, Huang G K, Wang Y Z, et al. Materials Letters, 2018, 210, 46.
40 Hou X C, Du D, Chang B H, et al. Materials, 2019, 12(8), 1279.
41 Liu T, Tian F, Tang Q Y. Henan Science and Technology, 2020(2), 128(in Chinese).
刘涛, 田芳, 唐秋逸. 河南科技, 2020(2), 128.
42 Bergmann H W, Mordike B L. MRS Online Proceedings Library, 1981, 8, 497
43 Miura H, Isa S, Omuro K. Transactions of the Japan Institute of Metals, 1984, 25(4), 284.
44 Yoshioka H, Asami K, Kawashima A, et al. Corrosion Science, 1987, 27(9), 981.
45 Miller M., Liaw P. Bulk metallic glasses: an overview, Springer, New York, 2007.
46 Inoue A, Takeuchi A. Acta Materialia, 2011, 6, 2243.
47 Lu Q L, Wang Y F, Xiao L J, et al. Materials Science Forum, 2013, 749, 583.
48 Zhang P L, Lu Y L, Yan H,et al. Surface and Coatings Technology, 2013, 230, 84.
49 Pardo A, Otero E, Merino M C, et al. Corrosion Science, 2002, 44(6), 1193.
50 Asami K, Sato T, Hashimoto K. Journal of Non-crystalline Solids, 1984, 68 (2-3), 261.
51 Shvets V V, Babej Y I. Fiziko-Khimicheskaya-Mekhanika-Materialov-Ukrainian-SSR, 1984, 20(4), 3.
52 Grigor'yants A G, Safonov A N, Baskov A F, et al. Metal Science and Heat Treatment, 1985, 27(11), 816.
53 Hu H Q, Zheng Q G, Li M P, et al. Journal of University of Science and Technology Beijing, 1994, 16 (2), 131(in Chinese).
胡汉起,郑启光,李梅萍,等. 北京科技大学学报, 1994, 16 (2), 131.
54 Zhu Q J, Zou Z D, Wang X H,et al. Transactions of the China Welding Institution, 2007, 28(9), 91 (in Chinese).
朱庆军, 邹增大, 王新洪, 等. 焊接学报, 2007,28(9), 91.
55 He S J, Xu G,Xue X J, et al. Shanghai Metals, 2016, 38(4), 1(in Chinese).
和圣杰, 徐钢, 薛小军, 等. 上海金属, 2016, 38(4), 1.
56 Zhu H M, Lin Z Q, Ye W,et al. Laser and Optoelectronics Progress, 2017, 54, 1.
57 Zhang Q, Sun L L, Pang S J,et al. Acta Aeronautica et Astronautica Sinica, 2014, 35(10), 2881(in Chinese)
张琪, 孙璐璐, 逄淑杰, 等. 航空学报, 2014, 35(10), 2881.
58 Ibrahim M Z, Sarhan A A D, Kuo T Y,et al. Materials Chemistry and Physics, 2019, 235, 121745.
59 Ibrahim M Z, Sarhan A A D, Kuo T Y,et al. Materials Chemistry and Physics, 2019, 227, 358.
60 Wang Y F, Lu Q L, Xiao L J, Shi Z Q. Rare Metal Materials and Engineering, 2014, 43 (2), 0274.
61 Wang Y F, Li H, Sun X,et al. Chinese Journal of Lasers, 2018, 45(3), 0302006 (in Chinese).
王彦芳, 李豪, 孙旭, 等. 中国激光, 2018, 45(3), 0302006.
62 Fan L, Chen H Y, Dong Y H,et al. Acta Metallurgica Sinica, 2018, 54(7), 1019.
63 Zhang Y Y, Huang G K, Lyu Y Z. Aeronautical Manufacturing Technology, 2020, 63(1/2), 87 (in Chinese).
张月媛, 黄国坤, 吕云卓.航空制造技术, 2020,63(1/2), 87.
64 Dai W P, Tang C Y, Wang M W,et al. Materials Reports B: Research Papers, 2015, 29(5), 100 (in Chinese).
戴文攀, 唐翠勇, 汪明文, 等. 材料导报:研究篇, 2015, 29(5), 100.
65 Wu X L, Hong Y S. Acta Metallurgica Sinica, 2000, 36(12), 1244(in Chinese).
武晓雷, 洪友士. 金属学报, 2000, 36(12), 1244.
66 Wang Q Q, Bai X D, Sun B, et al. Surface and Coatings Technology, 2021, 405(15), 126570
67 Zhu Q J, Wang X H, Qu S Y,et al. Nonferrous Metals Society China, 2008, 18, 270.
68 Basu A, Samant A N, Harimkar S P, et al. Surface and Coatings Technology, 2008, 202, 2623.
69 Tanaji P, Habib A S, Biswas Sourabh B, et al. Lasers in Manufacturing and Materials Processing, 2015, 2, 231.
70 Katakam S, Hwang J Y, Paital S, et al. Metallurgical & Materials Tran-sactions A, 2012, 43, 4957.
71 Katakam S, Kumar V, Santhanakrishnan S, et al. Journal of Alloys and Compounds, 2014, 604, 266.
72 Zhu Y Y, Li Z G, Huang J, et al. Applied Surface Science, 2012, 261, 896.
73 Zhu Y Y, Li Z G, Li R F, et al. Surface & Coatings Technology, 2013, 235, 699.
74 Hou X, Du D,Wang K, et al. Metals, 2018, 8(8), 622.
75 Chen Q J, Guo S B, Yang X J,et al. Physics Procedia, 2013, 50, 297.
76 Wang S L, Zhang Z Y, Gong Y B,et al. Journal of Alloys and Compounds, 2017, 728, 1116.
77 Wang H Z, Cheng Y H, Yang J Y, et al. Journal of Non-Crystalline Solids, 2020, 550, 120351
78 Gargarella P, Almeida A, Vilar R,et al. Surface and Coatings Technology, 2014, 240, 336.
79 Fu L, Huang H H, Chen X M,et al. Materials Science and Engineering of Powder Metallurgy, 2019, 24(2), 95(in Chinese).
伏利, 黄欢欢, 陈小明, 等. 粉末冶金材料科学与工程, 2019, 24(2), 95.
80 Ji X L, Luo C Y, Sun Y, et al. Wear, 2019, 438-439, 203113.
81 Wang T C, Zhu Y Y, Yao C W,et al. Materials for Mechanical Enginee-ring, 2020, 44(5), 54 (in Chinese).
王天聪, 朱彦彦, 姚成武, 等. 机械工程材料, 2020, 44(5), 54.
82 Li Z, Ji X L, Lang Z F,et al. Heat Treatment of Metals, 2019, 44(5), 117.
李泽, 纪秀林, 郎子樊, 等. 金属热处理, 2019, 44(5), 117.
83 Wang Y F, Li G, Shi Z Q,et al. Journal of Alloys and Compounds, 2014, 610, 713.
84 Bai X D. Investigation on microstructure and properties of Fe-based amorphous nanocrystalline composite coating by laser cladding. Master's Thesis, Southeast University, China, 2019 (in Chinese).
白旭东, 激光熔覆铁基非晶纳米晶复合涂层组织与性能研究.硕士学位论文,东南大学,2019.
85 Zhou S F, Xu Y B, Liao B Q, et al. Optics and Laser Technology, 2018, 103, 8.
86 Li G, Gan Y, Liu C, et al. Coatings, 2020, 10(1), 73.
87 Shi S H, Li B W. Laser Journal, 1998, 19(3), 46(in Chinese).
石世宏,李必文. 激光杂志, 1998, 19(3), 46.
88 Liu H X, Cai C X, Jiang Y H,et al. Optics and Precision Engineering, 2012, 20(11), 2402 (in Chinese).
刘洪喜,蔡川雄,蒋业华,等. 光学精密工程, 2012, 20(11), 2402.
89 Paul T, Alavi S H, Biswas S,et al. Lasers in Manufacturing and Materials Processing, 2015, 2(4), 231.
90 Xu J, Zhou J, Tan W,et al. Surface Engineering, 2020, 36(12), 1261.
91 Wang J, Yan Y H, Yang X C, et al. Journal of Optoelectronics·Laser, 1989, 8(1), 32(in Chinese).
王健, 阎毓禾, 杨洗陈, 等. 光电子·激光, 1989, 8(1), 32.
92 Han X L. Study on inside-laser coaxial wire-feeding process of laser cladding. Masters Thesis, Soochow University, China, 2009 (in Chinese).
韩学磊. 激光光内同轴送丝焊接工艺研究. 硕士学位论文, 苏州大学, 2009.
93 Zhang C, Chan K C, Wu Y, et al. Acta Materialia, 2012, 60, 4152.
94 Zhu Y Y, Li Z G, Li R F, et al. Applied Surface Science, 2013, 280, 50.
95 Shang X C, Zhang C Z, Xu T, et al. Materials Chemistry and Physics, 2021, 263, 124407.
96 McCafferty E, Moore P G. Laser Surface Treatment of Metals, 1986, 115, 263.
97 Huang G K, Qu L D, Lu Y Z, et al. Vacuum, 2018, 153, 39.
98 Bijalwan P, Kumar A, Nayak S K, et al. Journal of Alloys and Compounds, 2019, 796, 47.
99 Lu Y Z, Huang G K, Wang Y Z, et al. Materials Letters, 2018, 210, 46.
100 Shu F Y, Liu S, Zhao H Y, et al. Journal of Alloys and Compounds 2018, 731, 662.
101 Farmer J C, Chio J S, Saw C K et al. Metallurgical and Materials Tran-sactions A, 2009, 40, 1289.
102 Yao C W, Huang J, Zhang P L, et al. Applied Surface Science, 2011, 257(6), 2184.
103 Zhang C, Zhou H, Liu L. Acta Materialia, 2014, 72, 239.
104 Yasir M, Zhang C, Wang W, et al. Materials Letters, 2016, 171, 112.
105 Shang X C. Preparation of Fe-Cr-Mo-B-C amorphous-nanocrystalline coating and effect of in-situ synthesis of reinforcement on the wear and corrosion resistance of the coating. Master's Thesis, Shandong University of Science and Technology, China, 2021 (in Chinese).
尚希昌. Fe-Cr-Mo-B-C非晶纳米晶涂层的制备及原位合成增强相对涂层耐磨蚀性的影响. 硕士学位论文, 山东科技大学, 2021.
106 Farmer J C, Choi J S, Saw C, et al. Metallurgical and Materials Transacctions A, 2018, 49, 4860.
107 Farmer J C, Haslam J J, Day S D, et al. Journal of Materials Researches, 2007, 22, 2297.
108 Branagan D J, Swank W D, Meacham B E. Metallurgical and Materials Transacctions A, 2009, 40, 1306.
109 Khanolkar G R, Rauls M B, Kelly J P, et al. Scientific Reports, 2016, 6, 22568.
110 Lyu J, Liu C, Han Y, et al. Electric Power Science and Engineering, 2014, 30 (12), 13(in Chinese).
吕剑, 刘超, 韩宇, 等. 电力科学与工程, 2014, 30 (12), 13.
111 Yue P. Research on wear-proof coating preparation and characteristic of water-cooled wall. Master's Thesis, North China Electric Power University, China, 2016(in Chinese).
岳鹏. 水冷壁管耐磨熔覆层的制备及其特性研究. 硕士学位论文, 华北电力大学, 2016.
112 Zhou Z J,Xu L,Du Y B, et al.Journal of Chongqing Technology and Business University (Natural Science Edition),2021(2),69.
周志杰,许磊,杜彦斌,等.重庆工商大学学报:自然科学版,2021(2),69.
[1] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[2] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[3] 李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
[4] 李嘉, 秦时髦, 张恒龙. 基于STC-SMA层间性能的沥青混合料设计与评估[J]. 材料导报, 2023, 37(5): 21080246-8.
[5] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[6] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[7] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[8] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[9] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[10] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[11] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[12] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[13] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[14] 祖丽呼玛尔·木沙江, 赵静, 肖鹏飞. 金属基纳米材料在过硫酸盐高级氧化工艺中的应用进展[J]. 材料导报, 2023, 37(4): 21040022-8.
[15] 邱保金, 吴国荣, 李学坤. 汽车进气格栅材料加工工艺与结构设计的研究进展[J]. 材料导报, 2023, 37(4): 22050076-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed