Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15162-15168    https://doi.org/10.11896/cldb.20040143
  金属与金属基复合材料 |
激光熔覆制备抗冲蚀磨损镍基复合涂层的研究进展
李英1, 李平1,2
1 河南理工大学材料科学与工程学院,焦作 454003
2 中国科学院兰州化学物理研究所固体润滑国家重点实验室,兰州 730000
Research Progress on Erosion Wear Resistant Nickel-based CompositeCoatings Prepared by Laser Cladding
LI Ying1, LI Ping1,2
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
2 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 9108KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 冲蚀磨损是材料在流体或含固体颗粒流体的冲击作用下造成的表面磨损现象,在传统材料表面熔覆粉末可以有效改善其表面性能,抑制材料损伤速度,降低制造成本。采用激光熔覆制备的涂层具有结合强度高、对基材的稀释率低和热影响程度小等优点,用于解决恶劣环境下服役零件的冲蚀磨损问题,具有很好的应用前景。
熔覆材料主要包括铁基、钴基、镍基三个体系。其中,铁基涂层抗磨性好、成本低,但涂层易产生裂纹缺陷,自溶性、抗氧化性差;钴基涂层耐磨耐蚀性好,但是价格昂贵;镍基涂层抗高温氧化性和耐磨耐蚀性好,价格适宜,综合起来优势明显,应用前景广阔。
国内外很多研究人员通过调整镍基合金粉末的成分和激光熔覆的工艺参数改善涂层的性能,如向镍粉中加入硬质陶瓷颗粒或者合适的元素等提高镍基复合涂层的性能。主要硬质颗粒包括WC、Al2O3、SiC、TiC等。一些学者通过加入镍铝金属间化合物来提高涂层的耐蚀性能;一些学者向涂层中加入稀土元素以生成稳定的化合物;一些学者研究工艺参数对涂层性能的影响。此外,还有一些学者通过在渣浆泵、抽油泵、水轮机等零件上制备镍基涂层,显著提升工件的耐磨耐蚀性能。
本文综述了激光熔覆镍基复合涂层的研究进展,指出了目前研究存在的问题,并对未来的研究方向进行了展望,为镍基复合涂层的深入研究和在冲蚀磨损工况条件下的推广应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李英
李平
关键词:  激光熔覆  镍基复合涂层  工艺参数  冲蚀磨损    
Abstract: Erosion wear is the damage phenomenon of material surface caused by the impact of fluid or fluid containing solid particles. Cladding the powders on the surface of traditional materials can effectively improve the surface properties, inhibit the damage rate of the materials and reduce the manufacturing cost. The coating prepared by laser cladding has many advantages such as high bonding strength, low dilution ratio and small thermal effect to substrate. It can be used to solve erosion wear problem of the parts used in bad environment, and has a good application prospect.
The cladding materials mainly include three systems namely iron, cobalt and nickel based. Among them, the Fe-based coating possesses good wear resistance and lower cost, but it is prone to form crack defects, and has poor self-fluxing and oxidation resistance. The Co-based powder has excellent wear and corrosion resistance, yet the price is expensive. The nickel-based coating holds excellent oxidation resistance at high temperature, good wear and corrosion resistance, and the price is suitable. Therefore, the nickel-based coating shows obvious comprehensive advantage and bright application prospect.
Many researchers at home and abroad have improved the performance of nickel-based composite coating by adjusting the composition of nic-kel-based alloy powder and the process parameters of laser cladding, such as adding hard ceramic phase particles or appropriate elements to Ni based powders to enhance the properties of the Ni coating. The major hard phase particles include WC, Al2O3, SiC, TiC, etc. Some researchers have studied Ni-aluminum alloy compounds to enhance the corrosion resistance of coating. Some researchers have tried to introduce rare earth elements to generate stable compounds, in order to improve the performance of the coating.The influence of process parameters on the coating performance have been explored by researchers. Besides, some researchers have prepared nickel-based coating on slurry pumps, oil pumps, turbines, and other parts, which significantly enhances their wear and corrosion performance.
In this paper, the research progress of laser cladding Ni-based composite coating is reviewed, the existing problems are pointed out, and the future research direction is prospected. This will provide a reference for the further study of nickel-based composite coating and its extended application under the erosion wear condition.
Key words:  laser cladding    nickel-based composite coating    process parameters    erosion wear
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TG174.44  
基金资助: 国家自然科学基金(51275156);固体润滑国家重点实验室开放课题(LSL-1702);河南省高校基本科研业务费专项资金(NSFRF170502)
作者简介:  李英,河南理工大学材料科学与工程学院硕士研究生。目前主要从事材料的激光表面改性和抗冲蚀磨损性能研究。
李平,河南理工大学材料科学与工程学院教授。2006年于华中科技大学获得博士学位,主要研究方向为摩擦磨损、腐蚀和断裂理论及防护,先进材料制造技术。在国内外学术期刊上发表论文70余篇,申请国家专利30余项,其中授权20余项。获省部级科技进步奖5项,主持包括国家自然科学基金(面上项目) 、省部级项目等10多个项目。
引用本文:    
李英, 李平. 激光熔覆制备抗冲蚀磨损镍基复合涂层的研究进展[J]. 材料导报, 2021, 35(15): 15162-15168.
LI Ying, LI Ping. Research Progress on Erosion Wear Resistant Nickel-based CompositeCoatings Prepared by Laser Cladding. Materials Reports, 2021, 35(15): 15162-15168.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040143  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15162
1 Islam M A, Farhat Z N. Wear,2014,311(1-2),180.
2 Li P, Cai Q Z, Wei B K. Engineering Failure Analysis.2006,13(6),876.
3 Yao M J, Li C F, He J B, et al. Materials Review,2015,29(S26),283(in Chinese).
姚梦佳,李春福,何俊波,等.材料导报,2015,29(专辑26),283.
4 Yu J J, Zhao W J, Wang D L, et al. Materials China,2019(6),594(in Chinese).
于晶晶,赵文杰,王德亮,等.中国材料进展,2019(6),594.
5 Dalili N, Edrisy A, Carriveau R. Renewable and Sustainable Energy Reviews,2009,13(2),428.
6 Hu C L. The study of erosion resistance of TC4 alloy by magnetron sputtering TiNi/TiN composite coatings. Master’s Thesis, Xi’an University of Technology, China,2018(in Chinese).
胡程龙.TC4合金磁控溅射TiNi/TiN复合涂层及抗冲蚀磨损性能研究.硕士学位论文,西安理工大学,2018.
7 Xu K. Study on horizontal elbow erosion law in liquid-solid two phase flow. Master’s Thesis, China University of Petroleum, China,2017(in Chinese).
胥锟.水平弯管液固两相流冲蚀规律研究.硕士学位论文,中国石油大学,2017.
8 Wang Y E. Effect of sand shape and size distribution on the erosion cha-racteristics of wind turbine airfoil. Master’s Thesis, Lanzhou University of Technology, China,2019(in Chinese).
王亚娥.沙尘颗粒形状和粒径分布对风力机翼型的冲蚀磨损影响.硕士学位论文,兰州理工大学,2019.
9 Aminul I M, Farhat Z N, Ahmed E M, et al. Wear,2013,302(1-2),1592.
10 Wu B Q. High temperature erosion performance of high entropy alloy coa-tings by laser cladding. Master’s Thesis, Fuzhou University, China,2016(in Chinese).
吴炳乾.激光熔覆高上合金涂层高温冲蚀磨损性能的研究.硕士学位论文,福州大学,2016.
11 Feng J N. Research on cladding process and modification of laser cladding nickel-based alloy coating on 304 stainless steel. Master’s Thesis, Lanzhou University of Technology, China,2019(in Chinese).
冯嘉宁.304不锈钢表面激光熔覆镍基合金涂层的熔敷工艺及改性研究.硕士学位论文,兰州理工大学,2019.
12 Iwai Y, Miyajima T, Mizunoa A, et al. Wear,2009,267,264.
13 Gao X J, Guo N N, Zhu G M, et al. Surface Technology,2019,48(6),108(in Chinese).
高绪杰,郭娜娜,朱光明,等.表面技术,2019,48(6),108.
14 Abioye T E, McCartney D G, Clare A T. Journal of Materials Processing Technology,2015,217,232.
15 Wang X, Deng D, Qi M, et al. Optics & Laser Technology,2016,80,138.
16 Jeyaprakash N, Yang C H, Ramkumar K R. Applied Physics A,2020,126(6),1.
17 Ganamuth D S. US patent, US3952180,1976.
18 Li Z. Study on microstructure and properties of nickel-based WC laser cladding coating. Master’s Thesis, Tianjin Polytechnic University, China,2015(in Chinese).
李震.激光熔覆镍基WC涂层组织与性能研究.硕士学位论文,天津工业大学,2015.
19 Diaz E, Amado J M, Montero J, et al. Physics Procedia,2012,39(11),368.
20 Li Y. Microstructure and properties of Ni-based laser cladding layers. Master’s Thesis,Shandong University, China,2016(in Chinese).
李杨.Ni基复合熔覆层的组织及性能研究.硕士学位论文,山东大学,2016.
21 Yang R. Study on the microstructure and properties of WC/Ni laser cla-dding coatings. Master’s Thesis,University of Science and Technology Liaoning, China,2016(in Chinese).
杨蕊.激光熔覆WC/Ni复合涂层组织与性能的研究.硕士学位论文,辽宁科技大学,2016.
22 Weng Z K. Investigation into Ni/Co-based alloys reinforced with WC particles produced by diode laser cladding. Master’s Thesis, Huazhong University of Science and Technology, China,2016(in Chinese).
翁志坤.半导体激光熔覆WC增强Ni、Co基合金的研究.硕士学位论文,华中科技大学,2016.
23 Tobar M J, Amado J M, Alvarez C, et al. Materials Science Forum,2006,514-516,723.
24 Shen J Y, Yao C, Yao Y Q, et al. Materials for Mechanical Engineering,2020,44(7),18(in Chinese).
申井义,姚晨,姚永强,等.机械工程材料,2020,44(7),18.
25 Shang Q B, Yu A B, Wei J L, et al. Applied Laser,2015,35(5),525(in Chinese).
商权波,于爱兵,魏金龙,等.应用激光,2015,35(5),525.
26 Zhang Z Q. Study on the microstructure and properties of laser cladding gradient WC-Ni composite coating. Master’s Thesis, University of Science and Technology Liaoning, China,2015(in Chinese).
张志强.激光熔覆WC-Ni基梯度复合涂层组织与性能的研究.硕士学位论文,辽宁科技大学,2015.
27 Xu X Y, Liu W J, Zhong M L. Applied Laser,2002,22(2),50(in Chinese).
徐向阳,刘文今,钟敏霖.应用激光,2002,22(2),50.
28 Kui L. Preparing and properties research of wear-resisting ceramic-metal composite cladding layers. Master’s Thesis, North China Electric Power University, China,2013(in Chinese).
隗龙.耐磨陶瓷金属复合材料熔覆层的制备及特性研究.硕士学位论文,华北电力大学,2013.
29 Zhang D W, Zhang X P. Surface & Coatings Technology,2005,190(2-3),212.
30 Paul C P, Mishra S K, Tiwari P, et al. Optics & Laser Technology,2013,50,155.
31 Liu Z L, Wang N, Si S H, et al. Journal of Anhui University of Technology (Natural Science),2011,28(4),358(in Chinese).
刘自龙,王娜,斯松华,等.安徽工业大学学报,2011,28(4),358.
32 Wang Q Y, Wang X Z, Luo H, et al. Surface and Coatings Technology,2016,291,250.
33 Zhang D W, Lei T C. Wear,2003,255(1-6),129.
34 Pan X M, Zhang D W, Cao Y, et al. Hot Working Technology,2014(24),133(in Chinese).
潘晓铭,张大伟,曹宇,等.热加工工艺,2014(24),133.
35 Duan H L, Zhang J G, Yu W Q, et al. Oil-Gas Field Surface Enginee-ring,1999,18(1),59(in Chinese).
段慧玲,张继革,于伟千,等.油气田地面工程,1999,18(1),59.
36 Dong G, Bai W J, Zhang J Y, et al. Surface Technology,2004,2(14),36(in Chinese).
董刚,白万金,张九渊,等.表面技术,2004,2(14),36.
37 Bai W J. Research on laser cladding Ni/SiC composite coating sand the capability of them. Master’s Thesis, Zhejiang University of Technology, China,2004(in Chinese).
白万金.激光熔覆Ni/SiC复合涂层及其性能的研究.硕士学位论文,浙江工业大学,2004.
38 Li Q, Liu H X, Zhan X W, et al. The Chinese Journal of Nonferrous Metals,2014,24(11),2805(in Chinese).
李琦,刘洪喜,张晓伟,等.中国有色金属学报,2014,24(11),2805.
39 Chen G D, Wan J H. Welding Technology,2018,47(12),34(in Chinese).
程国东,万举惠.焊接技术,2018,47(12),34.
40 Chen R. Research of technology and properties of laser cladding on Ni/Al2O3-La2O3 surface of 38CrMoAl steel. Master’s Thesis, East China Jiaotong University, China,2009(in Chinese).
程锐.38CrMoAl表面激光熔覆Ni/Al2O3-La2O3工艺与熔覆层性能研究.硕士学位论文,华东交通大学,2009.
41 Sun Y H. Properties of Composite Study of Laser cladding Al2O3@Ni Composite Coatings. Master’s thesis, Nanchang University, China,2019(in Chinese).
孙勇辉.激光熔覆Al2O3@Ni制备复合涂层及其性能研究.硕士学位论文,南昌大学,2019.
42 Yang R D. Research on microstructure and properties of Ni60A alloy laser cladded coatings reinforced by Nano-SiC. Master’s Thesis, Northeastern University, China,2017(in Chinese).
杨瑞端.纳米SiC增强Ni60A激光熔覆合金组织性能的研究.硕士学位论文,东北大学,2017.
43 Yarrapareddy E, Kovacevic R. Surface & Coatings Technology,2008,202(10),1951.
44 Farahmand P, Frosell T, Mcgregor M, et al. The International Journal of Advanced Manufacturing Technology,2015,79(9-12),1607.
45 Duraiselvam M, Galun R, Wesling V, et al. Journal of Laser Applications,2006,18(4),297.
46 Duraiselvam M, Galun R, Siegmann S, et al. Wear,2006,261(10),1140.
47 Liu J. Study on microstructure and properties of Ni-AI intermetallic compound coating by laser cladding. Master’s Thesis, Guangdong University of Technology, China,2016(in Chinese).
刘晶.激光熔覆Ni-Al金属间化合物涂层组织及性能研究.硕士学位论文,广东工业大学,2016.
48 Niu M Y, Bi Q L, Zhu S Y, et al. China Surface Engineering,2012,25(5),100(in Chinese).
牛牧野,毕秦岭,朱圣宇,等.中国表面工程,2012,25(5),100.
49 Qian J H, Li X K, Qiu G M, et al. China Rare Earth,2006(2),73(in Chinese).
钱九红,李喜坤,邱关明,等.稀土,2006(2),73.
50 Peng Y J. Effects of rare earth on Ni-based alloy by laser cladding. Master’s Thesis,Liaoning Technical University, China,2006(in Chinese).
彭玉娟.稀土对激光熔覆镍基合金涂层的影响.硕士学位论文,辽宁工程技术大学,2006.
51 Yan Y G, Lin M X, Zhang S H, et al. Journal of the Chinese Rare Earth Society,2007,25(5),111(in Chinese).
颜永根,李明喜,张世宏,等.中国稀土学报,2007,25(5),111.
52 Zhang S, Wu S Q, Cui W D, et al. Rare Metal Materials and Enginee-ring,2018,47(5),1517(in Chinese).
张松,武世奇,崔文东,等.稀有金属材料与工程,2018,47(5),1517
53 Zhao T, Ca X, Wang S X,et al. Heat Treatment of Metals,2001,2(2),1(in Chinese).
赵涛,蔡珣,王顺兴,等.金属热处理,2001,2(2),1.
54 Zhang G Y,Wang C L,Gao Y. Surface Technology,2015,44(4),1(in Chinese).
张光耀,王成磊,高原.表面技术,2015,44(4),1.
55 Yu T B, Zhao Y, Sun J Y, et al. Journal of Materials Processing Techno-logy,2018,262,75.
56 Yang D, Ning Y H, Zhao Y G, et al. Material Reports,2017,31(Z2),133(in Chinese).
杨丹,宁玉恒,赵宇光,等.材料导报,2017,31(Z2),133.
57 Tan J H, Sun R L, Niu W,et al. Material Reports B: Research Papers,2020,34(6),12094(in Chinese).
谭金花,孙荣禄,牛伟,等.材料导报:研究篇,2020,34(6),12094.
58 Zhao J F, Zhang X P. Forging & Stamping Technology,2019,44(8),80(in Chinese).
赵建峰,张小萍.锻压技术,2019,44(8),80.
59 Sun Y F, Fu H G, Ping X L, et al. Material Science & Engineering Technology,2020,51(10),54.
60 Savanth T, Singh J, Gill J S. Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials Design and Applications, Doi: 10.1177/1464420720922568.
61 Wei J L, Yu A B, Shi C C, et al. Laser Journal,2016,37(4),7(in Chinese).
魏金龙,于爱兵,施晨淳,等.激光杂志,2016,37(4),7.
62 Huang J Y, Shen Z J, Zhang L X, et al. Laser & Optoelectronics Progress,2018,56(6),1(in Chinese).
黄俊媛,沈泽俊,张立新,等.激光与光电子学进展,2018,56(6),1.
63 Liao F R. Research on TiC-VC/Ni-based cladding layers by laser cladding on the surface of slurry pump flow components. Master’s Thesis, East China Jiaotong University, China,2014(in Chinese).
廖芳蓉.渣浆泵过流部件表面激光原位合成TiC-VC颗粒增强Ni基复合涂层研究.硕士学位论文,华东交通大学,2014.
64 Dong J. Research of technology and properties of laser cladding on TiC/NiCrBSi surface of slurry pump flow components. Master’s Thesis, East China Jiaotong University, China,2013(in Chinese).
董杰.渣浆泵过流部件表面激光合成TiC/NiCrBSi工艺及性能研究.硕士学位论文,华东交通大学,2013.
65 Jendrzejewskia R, Sliwinski G, Conde A, et al. In: Conference on Laser Technology Ⅶ: Applications of Lasers. Szczecin-Swinoujscie(Poland),2002,pp.23.
66 He Q K. Study on TiC/NiCrBSi cladding layers by laser cladding in-situ fabricated on the surface of oil well pump plunger. Master’s Thesis, China University of Petroleum, China,2009(in Chinese).
赫庆坤.抽油泵柱塞表面激光合成TiC/NiCrBSi熔覆层研究.硕士学位论文,中国石油大学,2009.
67 Jiang H R. Laser surface modification of 00Cr13Ni4Mo hydro turbine blade stainless steel. Master’s Thesis, Huazhong University of Science and Technology, China,2012(in Chinese).
江桦锐.00Cr13Ni4Mo不锈钢水轮机叶片的激光表面改性研究.硕士学位论文,华中科技大学,2012.
68 Zhang L, Chen X M, Wu Y M, et al. Materials Reports A: Review Papers,2017,31(9),75(in Chinese).
张磊,陈小明,吴燕明,等.材料导报:综述篇,2017,31(9),75.
69 Cui K B, Wang X D, Xiong C, et al. Explosion and Shock waves,2018,38(5),1013(in Chinese).
崔凯波,王向东,熊超,等.爆炸与冲击,2018,38(5),1013.
70 Zou H C. Chinese Journal of Turbomachinery,1995,4(7),23(in Chinese).
[1] 侯锁霞, 任呈祥, 吴超, 赵江昆, 张舵, 张好强. 激光熔覆层裂纹的产生和抑制方法[J]. 材料导报, 2021, 35(Z1): 352-356.
[2] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[3] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[4] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[5] 张彦超, 韦朋余, 朱强, 赵文涛, 李天庆, 曾庆波. 316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能[J]. 材料导报, 2021, 35(8): 8121-8126.
[6] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[7] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.
[8] 王凯博, 刘玉欣, 吕耀辉, 徐滨士. 工艺参数对脉冲等离子弧增材制造IN738LC合金组织与性能的影响[J]. 材料导报, 2021, 35(2): 2086-2091.
[9] 方振兴, 祁文军, 李志勤. 304不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J]. 材料导报, 2021, 35(12): 12123-12129.
[10] 高敬翔, 李昌, 陈正威, 韩兴. 基于相场法的超声振动对激光熔覆多晶凝固行为的影响[J]. 材料导报, 2021, 35(12): 12161-12168.
[11] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[12] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[13] 蒋三生, 梁立帅, 舒凤远. 45钢表面激光熔覆Co基合金覆层工艺优化[J]. 材料导报, 2020, 34(Z1): 448-451.
[14] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[15] 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed