Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12161-12168    https://doi.org/10.11896/cldb.20040250
  金属与金属基复合材料 |
基于相场法的超声振动对激光熔覆多晶凝固行为的影响
高敬翔, 李昌, 陈正威, 韩兴
辽宁科技大学机械工程与自动化学院,鞍山 114051
Effect of Ultrasonic Vibration on the Solidification Behavior of Laser Cladding Polycrystalline Based on Phase Field Method
GAO Jingxiang, LI Chang, CHEN Zhengwei, HAN Xing
School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan 114051, China
下载:  全 文 ( PDF ) ( 7415KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光熔覆是新兴的表面强化技术,具有工艺精度高、可控性好、组织细密、热畸变小等特点,在汽车、能源、电子、航空航天等领域得到广泛应用。激光熔覆过程中出现的微裂纹、气孔等微观缺陷严重影响了该技术的推广。超声振动的高频低幅振动可影响熔覆层凝固微观组织,有效减少微观缺陷。本研究基于相场法建立了超声振动下碟片激光器激光熔覆熔池凝固过程的动态模型,通过编程对模型进行求解,揭示了不同振幅下的多晶凝固组织,同时对熔覆凝固行为进行了实验微观表征,二者结论相吻合。研究表明,超声振动可有效细化熔覆层组织结构,促进结晶凝固形核,改变枝晶择优取向。振动不影响主枝晶臂的生长速度,对主枝晶臂宽度、二次枝晶臂的形成、生长速度和竞争生长影响明显。随着超声振幅增大,枝晶臂趋于茂盛,竞争生长明显,间接减少了凝固组织中气孔、裂纹形成,过大的超声振幅不会进一步改变枝晶形貌。该研究为超声振动下激光熔覆实践应用提供理论指导,为精确控制凝固组织提供重要的理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高敬翔
李昌
陈正威
韩兴
关键词:  超声振动  激光熔覆  相场法  碟片激光器  凝固机理    
Abstract: Laser cladding is an emerging surface strengthening technology, which has the characteristics of high process accuracy, good controllability, fine structure, and small thermal distortion. It is widely used in the fields of automobiles, energy, electronics, aerospace and other fields. The micro-cracks, pores and other micro-defects that appeared in the laser cladding process seriously affected the promotion of this technology. Ultrasonic vibration uses high-frequency and low-amplitude vibration, which can affect the cladding and solidification microstructure and effectively reduce microscopic defects. Based on the phase field method, a dynamic model of the laser cladding bath solidification process of a disc laser under ultrasonic vibration was established, and the model was solved by programming, revealing the polycrystalline solidification structure under different amplitudes, and at the same time, the cladding solidification behavior was experimentally characterized. The two conclusions are in good agreement. Studies have shown that ultrasonic vibration can effectively refine the structure of the cladding layer, promote crystal solidification and nucleation, and change the preferred orientation of dendrites. Vibration does not affect the growth rate of the main dendrite arm, but has obvious effects on the width of the main dendrite arm, the formation of the secondary dendrite arm, the growth rate and the competitive growth. With the increase of ultrasonic amplitude, the secondary and tertiary dendrite arms tend to flourish, and the competitive growth is obvious, which indirectly reduces the formation of pores and cracks in the solidified structure. Excessive ultrasonic amplitude will not further change the dendrite morphology. This research provides theoretical guidance for the practical application of laser cladding under ultrasonic vibration, and provides an important theoretical basis for precise control of the solidification structure.
Key words:  ultrasonic vibration    laser cladding    phase field method    disk laser    solidification mechanism
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TG111.4  
基金资助: 国家自然科学基金(E050402/51374127);公安部武警消防重点实验室开放课题(KF201704);辽宁省自然科学基金指导计划项目(2019ZD0277);辽宁科技大学创新团队建设项目(601009830)
通讯作者:  lichang2323-23@163.com   
作者简介:  高敬翔,辽宁科技大学硕士。主要从事激光制造等表面技术、微纳材料计算方法的研究。在国内外重要期刊发表文章11篇,其中SCI/EI检索8篇,申报发明专利3项。
李昌,辽宁科技大学机械工程与自动化学院教授、硕士研究生导师。2009年1月毕业于东北大学机械工程与自动化学院,获得机械设计及理论专业博士学位。主要从事机械可靠性工程、高速重载齿轮传动系统/航空轴承使役损伤机理及可靠性试验方法、激光熔覆及激光表面处理、焊接可靠性、超音速喷涂等金属表面先进制造技术研究。入选辽宁省“百千万人才工程”千层次人选,入选辽宁省高等学校优秀人才支持计划、辽宁省高等学校创新人才。在国内外重要期刊发表文章71篇,其中SCI/EI检索50篇,获批发明专利8项,实用新型专利16项,软件著作权2项,出版学术专著1部。
引用本文:    
高敬翔, 李昌, 陈正威, 韩兴. 基于相场法的超声振动对激光熔覆多晶凝固行为的影响[J]. 材料导报, 2021, 35(12): 12161-12168.
GAO Jingxiang, LI Chang, CHEN Zhengwei, HAN Xing. Effect of Ultrasonic Vibration on the Solidification Behavior of Laser Cladding Polycrystalline Based on Phase Field Method. Materials Reports, 2021, 35(12): 12161-12168.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040250  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12161
1 Li C Y, Zhang S, Kang Y P, et al. Laser Journal, 2002, 23(3), 5 (in Chinese).
李春彦, 张松, 康煜平, 等. 激光杂志, 2002, 23(3), 5.
2 Tsibulskiy I A, Klimova O G, Korsmik R S, et al.Welding International, 2018, 32(1), 76.
3 Jiang Q Y.Strength of Materials, 2019, 51(3), 450.
4 Ma N N, Chen J, Huang Z R, et al. Ceramics International, 2019, 45(6), 7703.
5 Zhang Z, Zhao Y, Shan J, et al.Journal of Alloys and Compounds, 2019, 790, 703.
6 Li G Q, Wang L F, Zhao L, et al.Thermal Processing Technology, 2021(16), 13(in Chinese).
李广琪, 王丽芳, 赵亮, 等. 热加工工艺, 2021(16), 13.
7 Farahmand P, Liu S, Zhang Z, et al.Ceramics International, 2014, 40(10), 15421.
8 Li M, Han B, Wang Y, et al.Optik-International Journal for Light and Electron Optics, 2016, 127(11), 4596.
9 Xie S, Li R, Yuan T, et al.Optics & Laser Technology, 2018, 99, 374.
10 Zhai L L, Zhang J W, Ban C Y.Solid State Phenomena, 2019, 295, 4756.
11 Zhao J W, Wu S S, Wan L, et al.Acta Metallurgica Sinica, 2009, 45(3), 314.
12 Qie X W, Li J, Ma X D, et al.Acta Metallurgica Sinica, 2008, 44(4), 414.
13 Chen C Y, Deng Q L, Song J L.Journal of Nanjing University of Aeronautics & Astronautics, 2005(S1), 44 (in Chinese).
陈畅源, 邓琦林, 宋建丽. 南京航空航天大学学报, 2005(S1), 44.
14 Xu J L, Zhou J Z, Tan W S, et al.Chinese Journal of Lasers, 2019, 46(1), 114 (in Chinese).
徐家乐, 周建忠, 谭文胜, 等.中国激光, 2019, 46(1), 114.
15 Chen L, Chen W J, Huang Q, et al.Journal of Materials Engineering, 2019, 47(5), 79 (in Chinese).
陈林, 陈文静, 黄强, 等. 材料工程, 2019, 47(5), 79.
16 Li M, Zhang Q, Han B, et al.Optics and Lasers in Engineering, 2020, 125, 105848.
17 Van Der Waals J, Kohnstamm P. Lehrbuch der Thermodynamic, 1908, 1.
18 Ginzburg V L, Landau L D.Zh. Eksper. Teor. Fiz, 1950, 20, 1064.
19 Halperin B, Hohenberg P, Ma S K. Physical Review B, 1974, 10(1), 139.
20 Dovjuu O, Kim S, Lee A, et al.Journal of Nanoscience and Nanotechno-logy, 2020, 20(4), 2337.
21 Li C, Yu Z, Gao J, et al.Surface and Coatings Technology, 2019, 357, 965.
22 Xu L, Li P N, Qiu X Y, et al.Aerosapce Materials & Technology, 2017, 47(5), 1 (in Chinese).
许磊, 李鹏南, 邱新义, 等. 宇航材料工艺, 2017, 47(5), 1.
23 Yang F Z. Research on ultrasonic vibration assisted welding of AZ41/AZ31B magnesium alloy. Ph.D. Thesis, Chongqing University, China, 2018 (in Chinese).
杨方洲. 超声波振动辅助AZ41/AZ31B镁合金焊接研究. 博士学位论文, 重庆大学, 2018.
24 Yang Y, Liu Z, Jiang R, et al.Journal of Alloys and Compounds, 2019, 811, 151991.
25 Tan D N, Zhao R R, Qi H Y, et al.Manufacturing Technology & Machine Tool, 2018(11), 58(in Chinese).
谭德宁, 赵荣荣, 齐华英, 等. 制造技术与机床, 2018(11), 58.
26 Daood U, Fawzy A S.Archives of Oral Biology, 2018, 98, 195.
27 Kuruc M, Šimna V, Necpal M, et al.Solid State Phenomena, 2017, 261, 173.
28 Liu L L. Technology and mechanism of rotating ultrasonic assisted EDM of metal matrix composites. Master's Thesis, North China University of Technology, China, 2019 (in Chinese).
刘林林. 金属基复合材料旋转超声辅助电火花加工技术及机理. 硕士学位论文, 北方工业大学, 2019.
29 Jiang R P. Study on the influence law and mechanism of ultrasonic field on the solidification process of high-strength aluminum alloy. Ph.D. Thesis, Central South University, China, 2014 (in Chinese).
蒋日鹏. 超声场对高强铝合金凝固过程的影响规律与作用机理研究. 博士学位论文,中南大学, 2014.
[1] 张彦超, 韦朋余, 朱强, 赵文涛, 李天庆, 曾庆波. 316L不锈钢表面激光熔覆Stellite6合金组织及其耐液态铅铋腐蚀性能[J]. 材料导报, 2021, 35(8): 8121-8126.
[2] 肖奇, 孙文磊, 刘金朵, 黄海博. Ni60A/WC激光熔覆涂层表面抗蚀行为[J]. 材料导报, 2021, 35(8): 8146-8150.
[3] 于坤, 祁文军, 李志勤. TA15表面激光熔覆镍基和钴基涂层组织和性能对比研究[J]. 材料导报, 2021, 35(6): 6135-6139.
[4] 方振兴, 祁文军, 李志勤. 304不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J]. 材料导报, 2021, 35(12): 12123-12129.
[5] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[6] 蒋三生, 梁立帅, 舒凤远. 45钢表面激光熔覆Co基合金覆层工艺优化[J]. 材料导报, 2020, 34(Z1): 448-451.
[7] 刘浩东, 喻辉, 戴京涛, 崔爱永, 魏华凯, 赵培仲, 卢长亮. 非真空激光定向凝固参数对DZ22合金熔覆层组织的影响[J]. 材料导报, 2020, 34(20): 20091-20095.
[8] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. TC4合金激光熔覆材料的研究现状[J]. 材料导报, 2020, 34(15): 15132-15137.
[9] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[10] 施佳鑫, 朱卫华, 朱红梅, 陈志勇, 刘晋京, 史新灵, 王新林. CaB6对激光熔覆生物陶瓷涂层组织和生物学性能的影响[J]. 材料导报, 2020, 34(10): 10030-10034.
[11] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[12] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[13] 谢敏, 王梅丰, 戴晓琴, 雷剑波, 王春霞, 周圣丰. 综论偏晶合金的制备技术:外场下凝固、快速凝固及激光技术[J]. 材料导报, 2019, 33(3): 490-499.
[14] 范鹏飞,孙文磊,张冠,王恪典. 激光熔覆铁基合金梯度涂层的组织性能及应用[J]. 材料导报, 2019, 33(22): 3806-3810.
[15] 刘颖, 董丽虹, 王海斗. 激光熔覆成型的各向异性表征方法研究现状[J]. 材料导报, 2019, 33(21): 3541-3546.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed