Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22050201-7    https://doi.org/10.11896/cldb.22050201
  金属与金属基复合材料 |
304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究
赵燕春1,2,*, 张林浩1, 师自强1, 李文生1, 张东3, 寇生中1,2
1 兰州理工大学省部共建有色金属加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学温州泵阀工程研究院,浙江 温州 325105
3 金川集团股份有限公司镍钴资源综合利用国家重点实验室,甘肃 金昌 737100
Study on the Microstructure and Properties of Fe-based Medium Entropy Alloy Coatings by Laser Melting on 304 Stainless Steel Surfaces
ZHAO Yanchun1,2,*, ZHANG Linhao1, SHI Ziqiang1, LI Wensheng1, ZHANG Dong3, KOU Shengzhong1,2
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 Wenzhou Pump and Valve Engineering Research Institute of Lanzhou University of Technology, Wenzhou 325105, Zhejiang, China
3 State Key Laboratory of Comprehensive Utilization of Nickel and Cobalt Resources of Jinchuan Group Co., Ltd., Jinchang 737100, Gansu, China
下载:  全 文 ( PDF ) ( 23461KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用激光熔覆技术在304不锈钢表面制备Fe63.3Mn14Si9.1Cr9.8C3.8中熵合金涂层,并采用正交试验设计方案,获得制备铁基中熵合金涂层的最佳工艺参数,同时对所得涂层的微观组织、显微硬度及耐磨耐蚀性能进行观察和测试。结果表明:最佳熔覆工艺参数为激光功率1 500 W、扫描速度4 mm/s、光斑直径4 mm。Fe63.3Mn14Si9.1Cr9.8C3.8中熵合金涂层为单一FCC相结构。Fe63.3Mn14Si9.1Cr9.8C3.8中熵合金涂层的平均显微硬度为279HV0.1,约为304不锈钢基体(200HV0.1)的1.4倍。在3.5%NaCl溶液中,Fe63.3Mn14Si9.1Cr9.8C3.8中熵合金涂层腐蚀电流密度为2.532×10-6 A·cm-2,相比于304不锈钢降低了一个数量级,涂层具有明显的钝化行为。在干摩擦条件下,涂层的摩擦系数为0.55,低于304不锈钢,其磨损率为6.26×10-4 mm3/(N·m),相比于304不锈钢,降低了34%。Fe63.3Mn14Si9.1Cr9.8C3.8中熵合金涂层耐蚀耐磨性能显著优于304不锈钢,具有良好潜在应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵燕春
张林浩
师自强
李文生
张东
寇生中
关键词:  激光熔覆  中熵合金  工艺参数  耐腐蚀性能  耐摩擦磨损性能    
Abstract: The Fe63.3Mn14Si9.1Cr9.8C3.8 medium entropy alloy coating was prepared on the surface of 304 stainless steel by laser melting technology. The optimum process parameters of Fe-based medium entropy alloy coating were obtained by orthogonal test design. The microstructure, microhardness and wear resistance and corrosion resistance of the coating were observed and tested. The results show that the optimum parameters are laser power 1 500 W, scanning speed 4 mm/s and spot diameter 4 mm. The Fe63.3Mn14Si9.1Cr9.8C3.8medium entropy alloy coating is mainly simple FCC phase structure. The average microhardness of the coating is 279HV0.1, which is about 1.4 times that of the 304 stainless steel matrix 200HV0.1. In 3.5% NaCl solution, the current density of Fe63.3Mn14Si9.1Cr9.8C3.8 medium entropy alloy coating is 2.532×10-6 A·cm-2, which is one order of magnitude lower compared to 304 stainless steel. The coating shows obvious passivation behavior. Under dry friction conditions, the friction coefficient of the coating is 0.55, which is lower than that of 304 stainless steel, and its wear rate is 6.26×10-4 mm3/(N·m), which is 34% lower compared to 304 stainless steel. The corrosion resistance of Fe63.3Mn14Si9.1Cr9.8C3.8 medium entropy alloy coating in 3.5% NaCl solution is better than that of 304 stainless steel, and good wear resistance, which has potential application value.
Key words:  laser cladding    medium entropy alloy    technological parameter    corrosion resistance    friction and wear resistance
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TG178.1  
基金资助: 国家自然科学基金(52061027); 浙江省自然科学基金项目(LY23E010002) ;甘肃省重点研发计划(22YF7GA155)
通讯作者:  *赵燕春,兰州理工大学教授,2005—2010年在兰州理工大学获得冶金物理化学专业工学硕士学位和材料加工工程专业工学博士学位,毕业后留校任教至今。其中2019—2020年赴美国田纳西大学诺克斯维尔分校材料系访学,主要从事金属凝固原理、非晶和高熵合金等领域开发研究,在国内外学术期刊发表论文70余篇,主持了国家自然科学基金、教育部博士点新教师基金、甘肃省杰出青年基金等课题10余项。 yanchun_zhao@163.com   
引用本文:    
赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
ZHAO Yanchun, ZHANG Linhao, SHI Ziqiang, LI Wensheng, ZHANG Dong, KOU Shengzhong. Study on the Microstructure and Properties of Fe-based Medium Entropy Alloy Coatings by Laser Melting on 304 Stainless Steel Surfaces. Materials Reports, 2023, 37(19): 22050201-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050201  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22050201
1 Cantor B, Chang I, Knight P, et al. Materials Science and Engineering:A, 2004, 375, 213.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
3 Wei R, Zhang K, Chen L, et al. Journal of Materials Science and Technology, 2020, 54(22), 153.
4 Yan X L, Guo H, Yang W, et al. Journal of Alloys and Compounds, 2021, 860, 158436.
5 Jiang P F, Zhang C H, Zhang S, et al. Materials Chemistry and Physics, 2020, 255, 123571.
6 Qiao J W, Wang Z, Ren L W, et al. Materials Science & Engineering A, 2016, 657, 353.
7 Gludovatz B, Hohenwarter A, Thurston K V S, et al. Nature Communications, 2016, 7, 10602.
8 Jian Z A, Yh A, Qw A, et al. Journal of Alloys and Compounds, 2020, 827, 154301.
9 Larissa M G, Igor M, Milan O, et al. Materials Characterization, 2020, 159, 1.
10 Lin D Y, Xu L Y, Jing H Y, et al. Additive Manufacturing, 2020, 36, 101591.
11 Liao W B, Lan S, Gao L B, et al. Thin Solid Films, 2017, 638, 383.
12 Soare V, Burada M, Constantin I, et al. Applied Surface Science, 2015, 358, 533.
13 Ashok M, Ameey A, Vlandimir L, et al. Journal of Alloys and Compounds, 2020, 854, 157140.
14 Zhou Z J, Xu L, Du Y B, et al. Journal of Chongqing Technology and Business University(Natural Science Edition), 2021, 38(2), 69.
周志杰, 许磊, 杜彦斌, 等. 重庆工商大学学报(自然科学版), 2021, 38(2), 69.
15 Hao W J, Sun R L, Niu W, et al. Surface Technology, 2021, 50(5), 87(in Chinese).
郝文俊, 孙荣禄, 牛伟, 等. 表面技术, 2021, 50(5), 87.
16 Wu C L, Zhang S, Zhang C H, et al. Surface and Coatings Technology, 2017, 315, 368.
17 Zhang S, Wu C L, Zhang C H, et al. Optics and Laser Technology. 2016, 84, 23.
18 Hui J, Han K, Li D, et al. Crystals, 2018, 8(11), 409.
19 Feng K, Zhang Y, Li Z, et al. Surface and Coatings Technology, 2020, 397(12), 126004.
20 Fang Z X, Qi W J, Li Z Q. Materials Reports, 2021, 35(12), 12123(in Chinese).
方振兴, 祁文军, 李志勤. 材料导报, 2021, 35(12), 12123.
21 Yang D, Ning Y H, Zhao Y G, et al. Materials Reports, 2017, 31(24), 133(in Chinese).
杨丹, 宁玉恒, 赵宇光, 等. 材料导报, 2017, 31(24), 133.
22 Zhao Y C, Li S, Li C L, et al. Materials Reports, 2022, 36(1), 121(in Chinese).
赵燕春, 李暑, 李春玲, 等. 材料导报, 2022, 36(1), 121.
23 Li S. Research on mechanical and corrosion properties of Fe-based me-dium entropy alloys. Master's Thesis, Lanzhou University of Technology, China, 2021 (in Chinese).
李暑. Fe基中熵合金的力学与腐蚀性能研究. 硕士学位论文, 兰州理工大学, 2021.
24 Wang Y, Lu X, Yuan N, et al. Journal of Alloys and Compounds, 2020, 849, 156.
25 Zhang Y. Advanced technology in high-entropy alloys, Chemical Industry Press, China, 2019. pp. 176( in Chinese)
张勇. 先进高熵合金技术. 化学工业出版社, 2019, pp. 176.
26 Wang C J, Chen Q J, Xia H X. Transactions of Nonferrous Metals Society of China, 2017, 27(12), 2663.
[1] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[2] 李素丽, 马恺悦, 冯高磊, 熊杰, 李连强. 激光熔覆同路送丝光路结构设计及分析[J]. 材料导报, 2023, 37(6): 21090270-6.
[3] 赵建华, 金荣华, 纪秀林, 段天泽, 庄曙东, 赵占西. Al含量对CoCrFeNiTi0.5高熵合金涂层耐冲蚀和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(17): 22030061-6.
[4] 刘卫东, 米国发, 李雷, 陈晓文, 潘雨佳, 翟芳艺, 苗浩伟. 辅助处理对激光熔覆层组织和性能影响的研究进展[J]. 材料导报, 2023, 37(15): 21120139-7.
[5] 梁梦, 黎振华, 刘美红, 罗心磊, 解靖伟. 选区激光熔化Fe-10Cu合金成形工艺优化研究[J]. 材料导报, 2023, 37(14): 21110123-7.
[6] 王恒星, 秦芳诚, 齐会萍, 汪扬波, 王于金. 双金属层状构件界面结合的模拟与实验研究进展[J]. 材料导报, 2023, 37(14): 21120136-12.
[7] 陈远豪, 肖黎, 梁昌兴, 罗月婷, 龚恒翔. 基于SnO2∶Sb薄膜沉积工艺参数优化的支持向量回归分析[J]. 材料导报, 2023, 37(11): 21120097-6.
[8] 方乃文, 黄瑞生, 武鹏博, 尹立孟, 龙伟民, 徐锴, 曹浩, 邹吉鹏. 钛合金窄间隙激光填丝焊接工艺及接头组织性能分析[J]. 材料导报, 2023, 37(10): 22010253-1.
[9] 王玉龙, 王周福, 王玺堂, 刘浩, 马妍. 连铸用铝碳耐火材料微结构调控研究进展[J]. 材料导报, 2023, 37(1): 20090128-10.
[10] 侯锁霞, 赵江昆, 李强, 何丽娜, 张好强. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(Z1): 22030105-4.
[11] 谷米, 孙荣禄, 牛伟, 郝文俊, 左润燕. 硼铁粉含量对激光熔覆AlCoCrFeNi高熵合金涂层性能及形貌的影响[J]. 材料导报, 2022, 36(8): 20120230-5.
[12] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[13] 王付胜, 王汉森, 何鹏, 胡隆伟, 陈亚军. 磁控溅射和电镀方法制备纯银镀层耐蚀性能分析[J]. 材料导报, 2022, 36(6): 20120254-6.
[14] 谭海丰, 侯梦晴, 吴晨, 贺春林, 张滨. 镍基石墨烯复合材料的研究进展[J]. 材料导报, 2022, 36(24): 21040029-6.
[15] 杨凯欣, 孙文磊, 肖奇, 邢学峰, 陈子豪. 基于田口灰色关联法对Fe06-15%TiC熔覆层激光工艺参数的优化[J]. 材料导报, 2022, 36(24): 21080157-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed