Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22050098-6    https://doi.org/10.11896/cldb.22050098
  无机非金属及其复合材料 |
MgAl-LDHs/TiO2复合光催化剂的制备及光催化性能
林博文1,2, 徐亦冬1,*, 余德密1,3
1 浙大宁波理工学院土木建筑工程学院,浙江 宁波 315100
2 重庆交通大学土木工程学院,重庆 400074
3 浙江大学建筑工程学院,杭州 310000
Preparation and Photocatalytic Performance of MgAl-LDHs/TiO2 Composite Photocatalyst
LIN Bowen1,2, XU Yidong1,*, YU Demi1,3
1 School of Civil Engineering and Architecture, NingboTech University, Ningbo 315100, Zhejiang, China
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
3 School of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310000, China
下载:  全 文 ( PDF ) ( 8702KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于水滑石(LDHs)的记忆效应,合成了MgAl-LDHs/TiO2复合材料。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、光致发光光谱(PL)等研究手段对材料进行表征。以亚甲基蓝(MB)为降解物,研究MgAl-LDHs/TiO2在模拟太阳光下的光催化性能并优化了反应条件;基于第一性原理,从原子尺度出发计算复合体系的能带结构和态密度;探究了光催化过程中的主要活性基团并提出了可能的光催化反应机理。结果表明:MgAl-LDHs/TiO2中TiO2组分的团聚现象有所改善,与单一TiO2相比,复合材料吸附能力极大增强,光催化活性明显提高。当LDHs质量占比为50%、焙烧温度为400 ℃时,催化剂在40 min内对亚甲基蓝的降解率达到95.3%。光催化反应过程中的主要活性基团为h+和·OH,MgAl-LDHs/TiO2为间接带隙半导体,模拟计算所得的禁带宽度为1.67 eV,光响应原理是电子从VB中的O 2p转移到CB中杂化的Ti 3d和Al 3p中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林博文
徐亦冬
余德密
关键词:  LDHs  记忆效应  吸附  光催化  协同效应  第一性原理  光催化机理    
Abstract: Based on the memory effect of hydrotalcite (LDHs), MgAl-LDHs/TiO2 composites were synthesized. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence spectroscopy (PL). Using methylene blue (MB) as degradation material, the photocatalytic performance of MgAl-LDHs/TiO2 under simulated sunlight was studied and the reaction conditions were optimized. Based on first principles theory, the band structure and state density of the composite system were calculated at atomic scale. The main active groups in the photocatalytic process were investigated and the possible photocatalytic reaction mechanism was proposed. The results showed that the agglomeration phenomenon of TiO2in MgAl-LDHs/TiO2 composites was improved, the adsorption capacity of the composite was greatly enhanced, and the photocatalytic activity of the composite was significantly improved compared with that of TiO2. The degradation rate of methylene blue reached 95.3% within 40 min when the mass ratio of LDHs was 50% and the calcination temperature was 400 ℃. The main active groups in the photocatalytic reaction process are h+ and ·OH. The bandgap obtained by MgAl-LDHs/TiO2 simulation calculation is 1.67 eV which is an indirect bandgap semiconductor. The photoresponse principle is transferred from O 2p in VB to hybrid Ti 3d and Al 3p in CB.
Key words:  LDHs    memory effect    adsorption    photocatalysis    synergistic effect    first principles    photocatalysis mechanism
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  O643  
基金资助: 浙江自然科学基金重点项目(LZ22E080003);浙江省交通厅科技计划项目(202225);浙江省自然科学基金一般项目(LY20E080002)
通讯作者:  *徐亦冬,浙江大学宁波理工学院教授、硕士研究生导师。2014年获东南大学材料学博士学位,2015年于英国Plymouth University做访问学者,主要从事先进土木工程材料、混凝土耐久性等领域的研究。主持国家自然科学基金2项,在J.Hazard Mater.、J.Clean Prod.、《硅酸盐学报》等期刊发表论文100余篇。xyd@nit.zju.edu.cn   
作者简介:  林博文,2019年获浙江大学宁波理工学院学士学位,2022年获重庆交通大学硕士学位,在徐亦冬教授的指导下进行研究。目前研究领域为光催化水泥基材料。
引用本文:    
林博文, 徐亦冬, 余德密. MgAl-LDHs/TiO2复合光催化剂的制备及光催化性能[J]. 材料导报, 2023, 37(19): 22050098-6.
LIN Bowen, XU Yidong, YU Demi. Preparation and Photocatalytic Performance of MgAl-LDHs/TiO2 Composite Photocatalyst. Materials Reports, 2023, 37(19): 22050098-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050098  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22050098
1 Chang Q, Jiang G D, Hu M X, et al. Environmental Science, 2014, 35(5), 1804(in Chinese).
常青, 江国栋, 胡梦璇, 等. 环境科学, 2014, 35(5), 1804
2 Kuśmierek K. Mechanisms&Catalysis, 2016, 119, 19.
3 He J Y, Jia Q M, Wu S S, et al. New Chemical Materials, 2014, 42(10), 230(in Chinese).
和佳媛, 贾庆明, 伍水生, 等. 化工新型材料, 2014, 42(10), 230
4 Kanan S, Moyet M A, Arthur R B, et al. Catalysis Reviews, 2019, 62(3), 1.
5 Komaraiah D, Radha E, Reddy M V R, et al. Surface and Interface Analysis, 2020, 53(2), 194.
6 Singh J, Juneja S, Soni RK, et al. Journal of Colloid and Interface Science, 2021, 590, 60.
7 Li D Y, Zhang W T, Zhang C. Materials Review, 2019, 33(23), 3900(in Chinese).
李大玉, 张文韬, 张超. 材料导报, 2019, 33(23), 3900.
8 Gong Y, Wang L L, Xu Y Q, et al. Materials Review, 2020, 34(S2), 1037(in Chinese).
巩云, 王龙龙, 徐亚琪, 等. 材料导报, 2020, 34(S2), 1037.
9 Jamil S, Alvi A R, Khan S R. Chemical Progress, 2019, 31(2), 394.
10 Liao Y M, Yu J, Wei S Q, et al. Environmental Science, 2021, 42(1), 293.
11 Wang Y, Qiao M, Li Y, et al. Small, 2018, 14, 1800136.
12 Chen S, Huang Y, Han X, et al. Chemical Engineering Journal, 2018, 359, 1679.
13 Li K, Liu M, Li S, et al. Journal of Alloys and Compounds, 2019, 817, 152712.
14 Fan G, Li F, Evans D G, et al. Chemical Society Reviews, 2014, 43(20), 7040.
15 Chubar N, Gilmour R, Gerda V, et al. Advances in Colloid and Interface Science, 2017, 245, 62.
16 Paredes S P, Valenzuela M A, Fetter G, et al. Journal of Physics and Chemistry of Solids, 2011, 72(8), 914.
17 Mascolo G, Mascolo M C. Microporous and Mesoporous Materials, 2015, 214, 246.
18 Huang Z, Wu P, Lu Y, et al. Journal of Hazardous Materials, 2013, 246-247, 70.
19 Jiang Y, Song Y, Li Y, et al. Acs Applied Materials & Interfaces, 2017, 9(43), 37645.
20 Xu Y D, Lin B W, Yu X N, et al. Construction and Building Materials, 2023, 377, 131122.
21 Guo M Y, Zhang X Q, Luo K, et al. Acta Scientiae Circumstantiae, 2021, 41(2), 504(in Chinese).
郭梦圆, 张雪乔, 罗坤, 等. 环境科学学报, 2021, 41(2), 504.
22 Wang L, Gao X, Cheng Y, et al. Journal of Photochemistry and Photo-biology A-chemistry, 2019, 369, 44.
23 Luo L J. Preparation of A novel TiO2 composite photocatalyst for the removal of bisphenol A. Ph. D. Thesis, Kunming University of Science and Technology, China, 2015(in Chinese).
罗利军. 具有吸附/光催化协同功能的二氧化钛复合光催化剂的制备及去除双酚A的研究. 博士学位论文, 昆明理工大学, 2015.
24 Mourid E H, Mouchtari E M E, Mersly L E, et al. Journal of Photochemistry & Photobiology A Chemistry, 2020, 396, 112530.
25 ContrerasJC, Martínez S, García J L, et al. International Journal of Photoenergy, 2019, 6760, 1.
26 Hu J S, Wang H, Liu L, et al. Journal of Molecular Catalysis, 2013(5), 67(in Chinese).
胡金山, 王欢, 刘利, 等. 分子催化, 2013(5), 67.
27 Dai H W, Chen J X, Miao X Z, et al. China Environmental Science, 2018(1), 202(in Chinese).
戴慧旺, 陈建新, 苗笑增, 等. 中国环境科学, 2018(1), 202.
28 Manring L E, Kramer M K, Foote C S. Tetrahedron Letters, 1984, 25(24), 2523.
[1] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[2] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[3] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[4] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[5] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[6] 李娅, 马飞跃, 张明, 涂行浩, 杜丽清. 不同尺寸改性果胶基磁性微球的制备及对Pb2+吸附性能的研究[J]. 材料导报, 2023, 37(9): 21050165-8.
[7] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[8] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[9] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[10] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[11] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[12] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[13] 宋学锋, 陆伟宁. 转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响[J]. 材料导报, 2023, 37(6): 21070249-7.
[14] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[15] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed