Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 22110216-7    https://doi.org/10.11896/cldb.22110216
  无机非金属及其复合材料 |
N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能
钱红梅1,*, 洪铤锴2
1 皖西学院建筑与土木工程学院,安徽 六安 237012
2 合肥学院能源材料与化工学院,合肥 230601
Preparation and Visible-light Photocatalytic Properties of N-S Co-doped CN/NS-TiO2 Nanocomposites
QIAN Hongmei1,*, HONG Tingkai2
1 School of Architecture and Civil Engineering, West Anhui University, Lu'an 237012, Anhui, China
2 School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
下载:  全 文 ( PDF ) ( 13602KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统的二氧化钛光催化剂由于带隙较宽、可见光吸收率极低等缺陷导致催化效果并不好。为提高其光催化性能,需对其进行改性,以便能应用于实际。本工作通过氢氟酸刻蚀制备了带有窄带隙的矩形二氧化钛纳米片,将其同时掺杂氮(N)和硫(S)元素(记为NS-TiO2),进一步扩大可见光响应范围。通过便捷的途径使NS-TiO2与g-C3N4(CN)成功构建具有异质结结构和氮、硫掺杂的二氧化钛(记为CN/NS-TiO2)。CN/NS-TiO2异质结结构的形成提高了光生电子-空穴对的产生和分离效率,并有利于载流子的快速转移。所制备的CN/NS-TiO2在可见光照射下对罗丹明B(RhB)的降解具有优异的光催化性能,并具有良好的稳定性,其催化活性分别是TiO2和NS-TiO2的5.06倍和2.03倍。通过各种分析方法对所制备的CN/NS-TiO2的结构、形貌、化学成分和光学性质进行了表征,提出了可能的光催化增强机理,为广泛合成具有优异光催化性能的TiO2基复合材料提供了新的见解。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钱红梅
洪铤锴
关键词:  二氧化钛(TiO2)  石墨相氮化碳(g-C3N4)  氮、硫掺杂  异质结构光催化剂  可见光光降解    
Abstract: The traditional photocatalyst TiO2 exhibits a poor catalytic effect owing to its wide band gap and very low visible-light-absorption rate. Therefore, to enable its practical application, it is necessary to modify the properties of TiO2 and improve its photocatalytic performance. In this study, we prepared rectangular TiO2 nanosheets with a narrow band gap via hydrofluoric acid etching and nitrogen and sulfur doping to obtain NS-TiO2 and expand its visible-light-response range. NS-TiO2 and g-C3N4 (CN) were successfully combined to form the compound catalyst CN/NS-TiO2, which possesses a heterojunction structure. The formation of CN/NS-TiO2 heterojunction structures improves the efficiency of the generation and separation of visible-light-generated electron-hole pairs and facilitates the rapid transfer of charge carriers. CN/NS-TiO2 exhibits excellent photocatalytic properties for the degradation of rhodamine B under visible light irradiation and excellent stability, and its catalytic activity is 5.06 and 2.03 times as much as TiO2 and NS-TiO2, respectively. The structure, morphology, chemical composition, and optical properties of CN/NS-TiO2 were characterized by various analytical methods, which suggested possible photocatalytic enhancement mechanisms and provided new insights into the extensive synthesis of TiO2 matrix composites with improved photocatalytic properties.
Key words:  titanium dioxide (TiO2)    graphite-phase carbon nitride (g-C3N4)    N,S doping    heterostructure photocatalyst    visible photodegradation
发布日期:  2023-09-06
ZTFLH:  O643.36  
通讯作者:  *钱红梅,皖西学院建筑与土木工程学院教授、硕士研究生导师。1999年于安徽建筑大学建筑工程系无机非金属材料专业本科毕业后到皖西学院工作至今,2005年于安徽大学化学化工学院无机化学专业硕士毕业,2015年于北京理工大学材料学院材料科学与工程专业博士毕业。目前主要从事无机纳米功能材料、光催化材料等方面的研究工作。发表论文20余篇,包括NPG Asia Materials、Nano Research、Journal of Nanomaterials、Fronters in Chemistry、Advanced Materials、RSC Advances等。hmqian0621@163.com   
引用本文:    
钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
QIAN Hongmei, HONG Tingkai. Preparation and Visible-light Photocatalytic Properties of N-S Co-doped CN/NS-TiO2 Nanocomposites. Materials Reports, 2023, 37(S1): 22110216-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110216  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/22110216
1 Kumar S G, Rao K K. Applied Surface Science, 2017, 391, 124.
2 Nur A S, Sultana M, Mondal A, et al. Journal of Water Process Engineering, 2022, 47, 102728.
3 Nemiwal M, Zhang T C, Kumar D. Science of the Total Environment, 2021, 767, 144896.
4 Brindha A, Sivakumar T. Journal of Photochemistry and Photobiology A, Chemistry, 2017, 340, 146.
5 Wang Y, Yang W, Chen X, et al. Applied Catalysis B, Environmental, 2018, 220, 337.
6 Shanmugam V, Sanjeevamuthu S, Jeyaperumal K S, et al. Journal of Industrial and Engineering Chemistry, 2019, 76, 318.
7 Wang X J, Yang W Y, Li F T, et al. Industrial & Engineering Chemistry Research, 2013, 52(48), 17140.
8 Delgado-Díaz D, Hernández-Ramírez A, Guzmán-Mar J, et al. Journal of Environmental Chemical Engineering, 2021, 9(6), 106683.
9 Eslami A, Amini M M, Yazdanbakhsh A R, et al. Journal of Chemical Technology & Biotechnology, 2016, 91(10), 2693.
10 Meng Z, Zhou B, Xu J, et al. Chemical Research in Chinese Universities, 2020, 36(6), 1045.
11 Ouyang W, Ji Y, Tan S, et al. Journal of Alloys and Compounds, 2021, 866, 158964.
12 Liu X, Chen J, Yang L, et al. Journal of Physics and Chemistry of Solids, 2022, 160, 110339.
13 Rather R A, Pooja D, Kumar P, et al. Journal of Cleaner Production, 2018, 175, 394.
14 Yuan Y J, Ye Z J, Lu H W, et al. ACS Catalysis, 2016, 6(2), 532.
15 Yuan Y J, Wang P, Li Z, et al. Applied Catalysis B, Environmental, 2019, 242, 1.
16 Dehkordi A B, Badiei A. Chemosphere, 2022, 288, 132392.
17 Ke T, Shen S, Yang K, et al. Applied Surface Science, 2022, 580, 152302.
18 Wu T, Niu P, Yang Y, et al. Advanced Functional Materials, 2019, 29(25), 1901943.
19 Wang J, Wang G, Cheng B, et al. Chinese Journal of Catalysis, 2021, 42(1), 56.
20 Lyu H G, Gao X, Meng C Q, et al. Journal of Inorganic Chemistry, 2019, 35(3), 422(in Chinese).
吕洪杰, 高欣, 孟承启, 等. 无机化学学报, 2019, 35(3), 422.
21 Rashid R, Shafiq I, Iqbal M J, et al. Journal of Environmental Chemical Engineering, 2021, 9(4), 105480.
22 Rajendran R, Vignesh S, Suganthi S, et al. Journal of Physics and Chemistry of Solids, 2022, 161, 110391.
23 AR S R, Wilson H M, Momin B M, et al. Applied Surface Science, 2020, 528, 146930.
24 Feng S, Li F. Journal of Environmental Chemical Engineering, 2021, 9(4), 105488.
[1] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[2] 王辉, 李士君, 王梅, 裴彦博, 胡绍争. 载银g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂的制备及光催化固氮产氨性能[J]. 材料导报, 2018, 32(20): 3496-3503.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed