Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21080157-9    https://doi.org/10.11896/cldb.21080157
  金属与金属基复合材料 |
基于田口灰色关联法对Fe06-15%TiC熔覆层激光工艺参数的优化
杨凯欣, 孙文磊*, 肖奇, 邢学峰, 陈子豪
新疆大学机械工程学院,乌鲁木齐 830047
Optimization of Laser Process Parameters of Fe06-15%TiC Cladding Layer Based on Taguchi Grey Correlation Method
YANG Kaixin, SUN Wenlei*, XIAO Qi, XING Xuefeng, CHEN Zihao
School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China
下载:  全 文 ( PDF ) ( 18568KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光熔覆技术作为一种新型的表面改性技术已广泛用于各个领域。熔覆层的形貌和质量与激光工艺参数直接相关,为了获得合适的工艺参数,采用田口法设计了三因素五水平共25组的正交试验,将激光功率、扫描速度、送粉率作为输入参数,将熔覆层宽度、熔覆层高度、稀释率作为输出参数(响应目标),用等值线图和曲面图直观反映输入参数与输出参数的关系;用信噪比(SNR)和方差分析(ANVOA)进一步分析输入参数与输出参数的关系。接着结合灰色理论将三个响应目标转化为单一的灰色关联度(GRG)进行分析,得到最优的激光工艺参数组合为:激光功率1 000 W、扫描速度3 mm/s、送粉率1.4 r/min。最后进行验证试验,发现三个响应目标均得到改善。此参数下形成的熔覆层从形貌和微观组织上都要比其他参数下更有优势,验证了田口灰色关联法的可靠性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨凯欣
孙文磊
肖奇
邢学峰
陈子豪
关键词:  工艺参数  田口法  方差分析  信噪比  灰色关联度  微观组织    
Abstract: As a new type of surface modification technology, laser cladding technology has been widely used in various fields. The morphology of the cladding layer is directly related to the quality and laser process parameters. In this paper, the Taguchi method was used to design an orthogonal experiment with 25 groups of three factors and five levels for obtain apt process parameters. Taking laser power, scanning speed and powder feeding rate as input parameters, with width of cladding layer, height of cladding layer and dilution rate as output parameters (response target), contour graphs and surface graphs were used to intuitively reflect the relationship between input parameters and output parameters; signal-to-noise ratio (SNR) and analysis of variance (ANVOA) were used to further analyze the relationship between input and output parameters. Then combined with the gray theory, the three response targets were transformed into a single gray correlation grade (GRG) for analysis, and the optimal combination of laser process parameters was obtained as follows: laser power 1 000 W, scanning speed 3 mm/s, powder feeding rate 1.4 r/min. Finally, the three response targets were found to be uniformly improved on verification tests. The cladding layer formed with this parameter has more significant advantages in terms of morphology and microstructure than that formed under other parameters, and the reliability of Taguchi grey correlation method is verified.
Key words:  process parameter    Taguchi method    analysis of variance    signal to noise ratio    grey relational grade    microstructure
发布日期:  2023-01-03
ZTFLH:  TN249  
基金资助: 新疆维吾尔自治区重点实验室开放基金 (2020520002);新疆维吾尔自治区克拉玛依市科技重大专项资助项目(2018ZD002B)
通讯作者:  sunwenxj@163.com   
作者简介:  杨凯欣,2019年6月毕业于西安思源学院,获得工学学士学位。现为新疆大学机械工程学院硕士研究生,在孙文磊教授的指导下进行研究。目前主要从事石油钻具材料激光表面改性研究。
孙文磊,新疆大学教授、博士研究生导师。1983年在新疆工学院获学士学位,2000年获华中科技大学硕士学位,2008年获华中科技大学博士学位。享受国务院政府特殊津贴专家,教育部机械类专业教学指导委员会委员,自治区重点学科带头人。主要从事数字化设计与制造、智能制造、增材再制造技术等方面的研究。在国内外学术刊物上发表论文200余篇,其中国家级核心刊物100余篇,主持承担了国家自然科学基金项目和国家重点基础研究发展计划等国家级项目6项。获得国家发明专利和软件著作权登记30余项,主编教材专著2部。
引用本文:    
杨凯欣, 孙文磊, 肖奇, 邢学峰, 陈子豪. 基于田口灰色关联法对Fe06-15%TiC熔覆层激光工艺参数的优化[J]. 材料导报, 2022, 36(24): 21080157-9.
YANG Kaixin, SUN Wenlei, XIAO Qi, XING Xuefeng, CHEN Zihao. Optimization of Laser Process Parameters of Fe06-15%TiC Cladding Layer Based on Taguchi Grey Correlation Method. Materials Reports, 2022, 36(24): 21080157-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080157  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21080157
1 Chen X M, Wang H J, Zhou X L, et al. Materials Reports, 2018, 32(Z1), 341(in Chinese).
陈小明, 王海金, 周夏凉, 等. 材料导报, 2018, 32(Z1), 341.
2 Tan J H, Sun R L, Niu W, et al. Materials Reports A: Review Papers, 2020, 34(8), 15132(in Chinese).
谭金花, 孙荣禄, 牛伟, 等. 材料导报:综述篇, 2020, 34(8), 15132.
3 Zhang J C, Shi S H, Gong Y Q, et al. Surface Technology, 2020, 49(10), 1(in Chinese).
张津超, 石世宏, 龚燕琪, 等. 表面技术, 2020, 49(10), 1.
4 Yu T B, Song B X, Xi W C, et al. Journal of Northeastern University (Natural Science), 2019, 40(4), 537(in Chinese).
于天彪, 宋博学, 郗文超, 等. 东北大学学报(自然科学版), 2019, 40(4), 537.
5 Zhao D D, Jiao F. Acta Armamentarii, 2018, 39(10), 2073(in Chinese).
赵丹丹, 焦锋. 兵工学报, 2018, 39(10), 2073.
6 Du Y B, Zhou Z J, Xu L, et al. Computer Integrated Manufacturing Systems, 2021, 21(6), 3 (in Chinese).
杜彦斌, 周志杰, 许磊, 等. 计算机集成制造系统, 2021, 21(6), 3.
7 Ren X, Liu H L, Lu F Y, et al. International Journal of Refractory Metals and Hard Materials, 2021, 96(9), 105490.
8 Sampree K R, Vasareddy M, Rajesh K, et al. Materials Today: Proceedings, 2020, 21(Pt 1), 244.
9 Vasareddy M, Sampreet K R, Rajesh K. et al. Materials Today: Proceedings, 2020, 21(Pt 1), 595.
10 Dinh S N, Hong S P, Chang M L. Journal of Manufacturing Processes, 2020, 55, 230.
11 Asit B, Pratoh S S, Saroj K P. Materials Today: Proceedings, 2020, 26(Pt 2), 2323.
12 Liu Y, Liu C, Liu W S, et al. Optics and Laser Technology, 2019, 111, 470.
13 Timur C, Muzaffer Z, Tamer S. Optics and Laser Technology, 2019, 120, 105714.
14 Levent S, Mustafa I, et al. Procedia CIRP, 2020, 94, 505.
15 Sasavanan M, Bupesh R V K, Palanikumar K, et al. Materials Today: Proceedings, 2021, 313, 652.
16 Long J Q, Huang W H, Xiang J W, et al. Optics and Laser Technology, 2018, 108, 97.
17 Pang Y F, Fu G Y, Wang M Y, et al. Chinese Journal of Laser, 2021, 48(6), 152 (in Chinese).
庞祎帆, 傅戈雁, 王明雨, 等. 中国激光, 2021, 48(6), 152.
18 Ye F X, Yang Y, Lou Z, et al. Materials Letters, 2021, 284(P1), 128859.
19 Chen T, Deng Z X, Liu D F, et al. Surface & Coatings Technology, 2021, 423, 127635.
20 Dara M, Goodarzi J, Pekkarinen A S. Welding in the World, 2017, 61(5), 883.
21 Kaushal A, Alexander R, Rao P T, et al. Carbon Trends, 2021, 2, 100016.
22 Wang M D, Zuo D W, Wang M, et al. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(3), 354(in Chinese).
王明娣, 左敦稳, 王珉, 等. 南京航空航天大学学报, 2009, 41(3), 354.
23 Zhang Q M, Zhong M L, Yang L, et al. Transactions of the China Wel-ding Institution, 2001(4), 51(in Chinese).
张庆茂, 钟敏霖, 杨森, 等. 焊接学报, 2001(4), 51.
24 Zhang Q M, Liu W J, Yang S, et al. Journal of Iron and Steel Research, 2002, 14(1), 11(in Chinese).
张庆茂, 刘文今, 杨森, 等. 钢铁研究学报, 2002, 14(1), 11.
25 Sudhin C, Rajesh R, Dev A M. Materials Today: Proceedings, 2021, 213, 590.
26 Kadhim A H. Materials Today: Proceedings, 2020, 20(Pt 4), 466.
27 Zhang Z, Kovacevic R. The Journal of the Minerals, Metals & Materials Society, 2016, 68(7), 1762.
28 Tamrin K F, Nukman Y, Sheikh N A, et al. Optics and Lasers in Engineering, 2014, 57, 40.
29 Kaja S S T. Materials Today: Proceedings, 2021, 226, 618.
30 Subrata M, Paul C P, Kukreja L M, et al. The International Journal of Advanced Manufacturing Technology, 2013, 66(1-4), 91.
[1] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[2] 侯锁霞, 赵江昆, 李强, 何丽娜, 张好强. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(Z1): 22030105-4.
[3] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[4] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[5] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[6] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[7] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[8] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[9] 高士康, 赵洪运, 李高辉, 周利, 刘会杰, 张成聪. 铝基复合材料搅拌摩擦焊研究现状[J]. 材料导报, 2022, 36(24): 21040264-9.
[10] 李阳, 蔡长春, 余欢, 徐志锋, 王振军, 张永刚, 钱鑫, 钟俊俊. 国产M50J级碳纤维/铝基复合材料的微观特征及拉伸性能研究[J]. 材料导报, 2022, 36(21): 21030323-6.
[11] 颉芳霞, 杨豪, 黄家兵, 何雪明, 俞经虎. 粉末冶金Ti-xNb-5Sn骨科合金的摩擦学行为[J]. 材料导报, 2022, 36(21): 21050088-5.
[12] 刘珂, 张宝煊, 黄光胜, 蒋斌, 汤爱涛, 潘复生. 控制挤压比制备的AZ91异构镁合金的组织与力学性能[J]. 材料导报, 2022, 36(20): 21050132-7.
[13] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[14] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[15] 王超, 陈琪, 肖述广, 董仕节, 谢志雄, 罗平, 解剑英. 316奥氏体不锈钢高频感应焊接技术及缺陷形成机理[J]. 材料导报, 2022, 36(19): 21020063-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed