Please wait a minute...
材料导报  2024, Vol. 38 Issue (10): 22110117-8    https://doi.org/10.11896/cldb.22110117
  金属与金属基复合材料 |
激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为
陈飞寰1, 蔡召兵1,2,3,*, 董颖辉2, 林广沛1, 张坡1,2, 卢冰文4, 古乐1,*
1 武汉科技大学冶金装备及其控制教育部重点实验室,武汉 430081
2 武汉科技大学机械传动与制造工程湖北省重点实验室,武汉 430081
3 武汉科技大学精密制造研究院,武汉 430081
4 广东省科学院新材料研究所,现代材料表面工程技术国家工程实验室,广州 510650
High-temperature Oxidation Behavior of Laser-Cladded NbMoTaWV Refractory High-entropy Alloy Coating
CHEN Feihuan1, CAI Zhaobing1,2,3,*, DONG Yinghui2, LIN Guangpei1, ZHANG Po1,2, LU Bingwen4, GU Le1,*
1 Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
2 Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
3 Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan 430081, China
4 National Engineering Laboratory of Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China
下载:  全 文 ( PDF ) ( 84577KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 难熔高熵合金涂层是近年来高熵合金领域的研究热点,有望成为未来重要的高温结构和功能材料。本工作采用激光熔覆技术制备了NbMoTaWV难熔高熵合金涂层,研究了其在800 ℃下的高温氧化行为,重点分析了不同氧化时间(10、20、30、50、100 h)的NbMoTaWV难熔高熵合金涂层组织结构演变、显微硬度变化及界面元素扩散行为。实验结果表明:NbMoTaWV难熔高熵合金涂层主要由Fe7Ta3型HCP固溶体相、(Fe,Ni)基体相及未熔高熵合金粉末相组成,而经不同时间氧化处理后,涂层表面生成了以Fe2O3和Fe3O4为主的氧化物相。800 ℃高温氧化处理后,NbMoTaWV高熵合金涂层内部组织结构变化不大,仅部分氧元素扩散进入到涂层内部。高温氧化导致NbMoTaWV难熔高熵合金涂层的显微硬度有所提升,但随着氧化时间的延长,NbMoTaWV难熔高熵合金涂层的显微硬度呈现出先增加后降低的趋势,且当氧化时间为20 h时,其显微硬度达到最大,这与高温扩散所导致的固溶强化有关。同时,TG-DSC证实了NbMoTaWV难熔高熵合金涂层在800 ℃具有优异的高温稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈飞寰
蔡召兵
董颖辉
林广沛
张坡
卢冰文
古乐
关键词:  激光熔覆  NbMoTaWV  难熔高熵合金涂层  高温氧化  高温稳定性    
Abstract: Refractory high-entropy alloy (HEA) coatings have been a hot research topic in the field of HEAs in recent years and are expected to become an important high-temperature structural and functional material in the future. In this work, the NbMoTaWV refractory HEA coating was prepared by laser cladding, and its oxidation behavior at 800 ℃ was studied. The microstructure evolution, micro-hardness changes and interface diffusion behavior of NbMoTaWV refractory HEA coating at different oxidation time (10, 20, 30, 50, 100 h) were analyzed. The experimental results show that the NbMoTaWV refractory HEA coating is mainly composed of Fe7Ta3-type HCP solid solution phase, (Fe, Ni) matrix phase and un-melted HEA powder phase. After oxidation treatment at different time, the coating surface is formed with Fe2O3 and Fe3O4 as the main oxide phases. With high-temperature oxidation treatment at 800 ℃, the internal microstructure of NbMoTaWV refractory HEA coating has a little change, and only part of the oxygen elements diffuse into the coating. However, high-temperature oxidation results in the increased micro-hardness, and with the increase of oxidation time, the micro-hardness of NbMoTaWV refractory HEA coating increases first and then decreases. The micro-hardness reaches the maximum when the oxidation time is 20 h, which is related to the solid solution strengthening caused by high-tempe-rature diffusion. Moreover, TG-DSC confirms that NbMoTaWV refractory HEA coating has excellent high temperature stability at 800 ℃.
Key words:  laser cladding    NbMoTaWV    refractory high-entropy alloy coating    high-temperature oxidation    high-temperature stability
出版日期:  2024-05-25      发布日期:  2024-05-28
ZTFLH:  TB31  
基金资助: 国家自然科学基金(51905524;52005113);广东省科学院项目(2022GDASZH-2022010107)
通讯作者:  *蔡召兵,武汉科技大学机械自动化学院副教授、硕士研究生导师。2009年9月—2018年3月本硕博毕业于哈尔滨工程大学,2018年4月—2020年6月在中国科学院宁波材料技术与工程研究所从事博士后研究工作。目前以第一作者/通信作者身份发表SCI论文20余篇、EI论文3篇,参与授权国家发明专利10余项。主持国家自然科学基金青年项目、中国博士后面上、JPPT项目等。主要研究领域为表面工程与摩擦学。caizhaobing@wust.edu.cn
古乐,教授、博士研究生导师,湖北省楚天学者特聘教授,武汉英才(产业领军人才)。中国机械工程学会摩擦学分会委员、湖北省摩擦学专业委员会副理事长、中国机械工程学会表面工程分会委员、中国科学院材料磨损与防护重点实验室学术委员、航天三院“两机”重大专项技术专家。主持完成国家重点研发计划“制造基础技术与关键部件”专项、国家自然科学基金委联合基金重点项目、国防科工局基础科研“智能制造”专项等。发表学术论文50余篇,授权发明专利10余项。曾获第13届霍英东教育基金会青年教师奖一等奖、国家技术发明二等奖、机械工业科技进步二等奖。hitribology@163.com   
作者简介:  陈飞寰,2021年6月于长江大学获得工学学士学位。现为武汉科技大学机械自动化学院硕士研究生,在蔡召兵副教授的指导下开展研究工作。目前主要从事难熔高熵合金的制备及高温稳定性能研究。
引用本文:    
陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
CHEN Feihuan, CAI Zhaobing, DONG Yinghui, LIN Guangpei, ZHANG Po, LU Bingwen, GU Le. High-temperature Oxidation Behavior of Laser-Cladded NbMoTaWV Refractory High-entropy Alloy Coating. Materials Reports, 2024, 38(10): 22110117-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110117  或          http://www.mater-rep.com/CN/Y2024/V38/I10/22110117
1 Yeh J W. Annales De Chimie-science Des Materiaux, 2006, 31, 633.
2 Yeh J W, Chen S K, Lin S J, et al. Advance Engineering Materials, 2004, 6, 299.
3 Zhang Y, Chen M B, Yang X, et al. Advanced technology in high-entropy alloys, Chemical Industrial Press, China, 2020, pp.13 (in Chinese).
张勇, 陈明彪, 杨潇, 等. 先进高熵合金技术, 化学工业出版社, 2020, pp.13.
4 Chen S, Oh H S, Gludovatz B, et al. Nature Communications, 2020, 11, 826.
5 Zhang Y, Yang X, Liaw, P K. JOM, 2012, 64, 830.
6 Gao M C, Yeh J W, Liaw P K, et al. High-entropy alloys, Springer International Publishing, Switzerland, 2016, pp.6.
7 Nutor R K, Cao Q P, Wei R, et al. Science Advance, 2021, 7(34), eabi4404.
8 Tang Z, Yuan T, Tsai C W, et al. Acta Materialia, 2015, 99, 247.
9 Gludovatz B, Hohenwarter A, Catoor D, et al. Science, 2014, 345, 1153.
10 Li Z M, Pradeep K G, Deng Y, et al. Nature, 2016, 534, 227.
11 Butler T M, Alfano J P, Martens R L, et al. JOM, 2015, 16, 246.
12 Senkov O N, Wilks G B, Scott J M, et al. Intermetallics, 2011, 19, 698.
13 Yurchenko N, Panina E, Shaysultanov D, et al. Materialia, 2021, 20, 101225.
14 Han Z D, Luan H W, Liu X, et al. Materials Science and Engineering A, 2018, 712, 380.
15 Juan C C, Tsai M H, Tsai C W, et al. Intermetallics, 2015, 62, 76.
16 Tukac U, Ozalp A, Aydogan E. Journal of Alloys and Compounds, 2023, 930, 167386.
17 Guo Y, Liu Q. Intermetallics, 2018, 102, 78.
18 Liao W B, Lan S, Gao L B, et al. Thin Solid Films, 2017, 638, 383.
19 Fan X M, Ren X M. Materials Science & Technology, 2014, 22(1), 105 (in Chinese).
樊新民, 任小敏. 材料科学与工艺, 2014, 22(1), 105.
20 Zhang M, Wang D, He L, et al. Optics & Laser Technology, 2022, 149, 107845.
21 Wen X, Cui X, Jin G, et al. Journal of Alloys and Compounds, 2020, 835, 155449.
22 Ma Q, Lu B, Zhang Y M, et al. Materials Letters, 2022, 324, 132667.
[1] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[2] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[3] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[4] 李素丽, 马恺悦, 冯高磊, 熊杰, 李连强. 激光熔覆同路送丝光路结构设计及分析[J]. 材料导报, 2023, 37(6): 21090270-6.
[5] 高圣伦, 孙彬, 程磊, 刘振宇. 排气系统用不锈钢在汽车尾气环境下的高温氧化行为[J]. 材料导报, 2023, 37(24): 22080197-7.
[6] 畅庚榕, 刘明霞, 孟瑜, 郭岩, 马大衍, 李世亮, 徐可为. H13钢表面同质激光熔覆中WC微合金化行为及摩擦学性能研究[J]. 材料导报, 2023, 37(22): 22030041-6.
[7] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[8] 刘卫东, 米国发, 李雷, 陈晓文, 潘雨佳, 翟芳艺, 苗浩伟. 辅助处理对激光熔覆层组织和性能影响的研究进展[J]. 材料导报, 2023, 37(15): 21120139-7.
[9] 李多娇, 程春龙, 乐启炽, 陈亮, 闫家仕. 镁合金氧化机理研究进展[J]. 材料导报, 2023, 37(1): 20120108-9.
[10] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[11] 侯锁霞, 赵江昆, 李强, 何丽娜, 张好强. 对激光熔覆形成缺陷的影响因素的探究[J]. 材料导报, 2022, 36(Z1): 22030105-4.
[12] 谷米, 孙荣禄, 牛伟, 郝文俊, 左润燕. 硼铁粉含量对激光熔覆AlCoCrFeNi高熵合金涂层性能及形貌的影响[J]. 材料导报, 2022, 36(8): 20120230-5.
[13] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[14] 吕绪明, 江涛, 张云汉, 苑建志, 杨凯, 党博, 张平则. 纯铜表面Ta-W合金层的抗高温氧化及摩擦行为[J]. 材料导报, 2022, 36(23): 22050017-5.
[15] 王伟, 孙文磊, 张志虎, 于江通, 黄海博, 王杨宵, 肖奇. 激光二次扫描熔覆涂层组织演变规律及数值模拟研究[J]. 材料导报, 2022, 36(2): 20090204-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed