Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22080197-7    https://doi.org/10.11896/cldb.22080197
  金属与金属基复合材料 |
排气系统用不锈钢在汽车尾气环境下的高温氧化行为
高圣伦1, 孙彬1,*, 程磊2, 刘振宇2
1 沈阳大学机械工程学院,沈阳 110044
2 东北大学轧制技术及连轧自动化国家重点实验室,沈阳 110819
High-temperature Oxidation Behavior of Stainless Steel for Exhaust System Under Automotive Exhaust Environment
GAO Shenglun1, SUN Bin1,*, CHENG Lei2, LIU Zhenyu2
1 Institute of Mechanical Engineering, Shenyang University, Shenyang 110044, China
2 State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 14292KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过循环氧化实验研究了不同时间和温度对合成尾气气氛中444铁素体不锈钢氧化效率和氧化铁皮形貌的影响。结果表明,444铁素体不锈钢在合成尾气环境中950 ℃下氧化总质量的变化幅度比较小,950 ℃下氧化100 h后单位面积上的增重与1 050 ℃下的增重相比降低85.7%左右。氧化温度在950 ℃及1 050 ℃时金属表面氧化铁皮大致可以分为两层。表层氧化产物主要由Fe-Cr尖晶石和Mn-Cr尖晶石组成,内层以Cr2O3为主。氧化铁皮与基体金属界面处存在硅元素氧化物富集层,以及靠近氧化铁皮的基体中出现富硅和钛的内氧化物。当在1 050 ℃下氧化反应进行70 h后,试样表面出现瘤状氧化物,其外层主要为铁氧化物,内层主要为铁铬氧化物。1 050 ℃下不锈钢氧化过程中氧化铁皮和基体界面上可见三种突出物,突出物与硅富集层长大相关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高圣伦
孙彬
程磊
刘振宇
关键词:  铁素体不锈钢  高温氧化  合成尾气  失稳氧化    
Abstract: The effect of different times and temperatures on the oxidation efficiency and iron oxide scale morphology of 444 ferritic stainless steel in the atmosphere of synthesis exhaust gas were studied by cyclic oxidation test. The results show that the change of total oxidation weight of stainless steel sample is relatively small at 950 ℃ in the atmosphere of synthesis exhaust gas. The weight gain per unit area of the sample oxidized at 950 ℃ for 100 h is about 85.7% less than that oxidized at 1 050 ℃ for 100 h. The increase in temperature increases the oxidation rate of stainless steel and accelerates the breakaway oxidation process. When the oxidation temperatures are 950 ℃ and 1 050 ℃, the iron oxide scale on the metal surface can be roughly divided into two layers. The surface oxidation products are mainly composed of Fe-Cr spinel and Mn-Cr spinel. The inner layer is primarily Cr2O3. There is a silicon oxide enrichment layer at the interface between the iron oxide scale and the substrate, and there are silicon and titanium internal oxides in the substrate near the iron oxide scale. When the oxidation reaction temperature is 1 050 ℃ and the oxidation time is 70 h, oxide nodules are produced on the oxide scale. The oxide nodules’ outer layer is mainly iron oxide, and the inner layer is primarily iron chromium oxide. When stainless steel was oxidized at 1 050 ℃, three kinds of protrusions were observed at the interface between the iron oxide scale and substrate. The protrusions were trapped in the silicon enrichment layer and iron oxide scale and almost disappeared after 100 h of oxidation. The growth of the silicon-enriched layer is related to protrusion formation.
Key words:  ferritic stainless steel    high temperature oxidation    synthetic exhaust gas    breakaway oxidation
发布日期:  2023-12-19
ZTFLH:  TG172.3  
基金资助: 国家自然科学基金(51301111);辽宁省自然基金(2019-KF-05-04);沈阳市中青年科技创新人才支持计划(RC200387)
通讯作者:  *孙彬,2011年博士毕业于东北大学,沈阳大学机械工程学院副院长、教授、博士研究生导师。主要研究方向是钢铁材料的高温氧化及腐蚀。沈阳市拔尖人才,辽宁省“百千万”人才千层次。参与的鞍钢课题“连铸连轧工艺氧化铁皮控制技术”获得冶金科学技术一等奖。授权发明专利9项,发表论文40余篇,出版专著1部,科技成果转化1项。sunbin_shenyang@syu.edu.cn   
作者简介:  高圣伦,2018年6月于沈阳大学获得学士学位。现为沈阳大学材料科学与工程专业硕士研究生,在孙彬教授指导下学习。目前主要研究领域为金属的高温氧化。
引用本文:    
高圣伦, 孙彬, 程磊, 刘振宇. 排气系统用不锈钢在汽车尾气环境下的高温氧化行为[J]. 材料导报, 2023, 37(24): 22080197-7.
GAO Shenglun, SUN Bin, CHENG Lei, LIU Zhenyu. High-temperature Oxidation Behavior of Stainless Steel for Exhaust System Under Automotive Exhaust Environment. Materials Reports, 2023, 37(24): 22080197-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080197  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22080197
1 Wang H, Sun B, Wang J M, et al. Hot Working Technology, 2016, 45(18), 46(in Chinese).
王皓, 孙彬, 王建明, 等. 热加工工艺, 2016, 45(18), 46.
2 Han M F, Yang Z B, Zhao X L, et al. Materials Science and Technology, 2007, 15(4), 534(in Chinese) .
韩敏芳, 杨志宾, 赵晓林, 等. 材料科学与工艺, 2007, 15(4), 534.
3 Liang Y, Long Y Y, Fu G Y. Liaoning Chemical Industry, 2004, 33(5), 263 (in Chinese) .
梁艳, 龙媛媛, 付广艳. 辽宁化工, 2004, 33(5), 263.
4 Saunders S R J, Monteiro M, Rizzo F. Progress in Materials Science, 2008, 53, 775.
5 Acher A, Santacreu P O, Faivre L. High Temperature Technology, 2013, 30(1), 36.
6 Shi C X, Zhong Z Y. Acta Metallurgica Sinica, 2010, 46(11), 8(in Chinese).
师昌绪, 仲增墉. 金属学报, 2010, 46(11), 8.
7 Li D C. Stainless steel strip production technology, Chemical Industry Press, China, 2008 (in Chinese).
李登超. 不锈钢板带材生产技术, 化学工业出版社, 2008.
8 Zhang J M. Investigation on the high temperature oxidation and thermal fatigue behaviors of ferritic stainless steels for exhaust system. Ph. D. Thesis, Shanghai University, China, 2021(in Chinese).
詹建明. 排气系统用铁素体不锈钢的高温氧化和热疲劳行为研究. 博士学位论文, 上海大学, 2021.
9 Zhan J, Li M, Huang J, et al. Metals-Open Access Metallurgy Journal, 2019, 9(2), 129.
10 Juuti T, Rovatti L, Mäkelä A, et al. Journal of Alloys & Compounds, 2014, 616, 250.
11 Chen Y S, Zhan J M, Ni M Z, et al. Corrosion Science and Protection Techniques, 2019, 31(2), 7 (in Chinese) .
陈以生, 詹建明, 倪清钊, 等. 腐蚀科学与防护技术, 2019, 31(2), 7.
12 Dan J Y, Zhou H R, Liu P Y. Journal of Wuhan University of Science and Technology, 2019, 42(1), 9(in Chinese) .
但佳永, 周和荣, 刘鹏洋. 武汉科技大学学报, 2019, 42(1), 9.
13 Promdirek P, Lothongkum G, Chandra-Ambhorn S, et al. Oxidation of Metals, 2014, 81(3-4), 315.
14 Cheng X, Jiang Z, Wei D, et al. Surface & Coatings Technology, 2014, 258, 257.
15 Mikkelsen L, Linderoth S, Bilde-Sørensen J B. In:6th International Symposium on High Temperature Corrosion and Protection of Materials. Les Embiez, 2004, pp. 16.
16 Stott F H, Wood G C, Stringer J. Oxidation of Metals, 1995, 44(1/2), 113.
17 Wouters Y, Bamba G, Galerie A, et al. Materials Science Forum, 2004, 461-464, 83.
18 Wei L, Zheng J, Chen L, et al. Corrosion Science, 2018, 142, 79.
19 Birks N, Meier G H, Pettit F S. Cambridge Univ Pr, 2006, 2013(1), 28.
20 Liu X J. Research on high temperature oxidation behavior and controlling technology and application of oxide scale of hot-rolled non-oriented silicon steel. Ph. D. Thesis, Northeastern University, China, 2014(in Chinese).
刘小江. 热轧无取向硅钢高温氧化行为及其氧化铁皮控制技术的研究与应用. 博士学位论文, 东北大学, 2014.
21 Bauer R, Baccalaro M, Jeurgens L P H, et al. Oxidation of Metals, 2008, 69(3), 265.
22 Fedorova E, Braccini M, Parry V, et al. Corrosion Science, 2015, 103(2016), 145.
23 Li Z F. Evolution mechanism of oxide scale of hot rolled steel and development of acid-free picking technology. Ph. D. Thesis, Northeast University, China, 2018(in Chinese).
李志峰. 热轧钢材氧化铁皮演变机理与免酸洗技术开发. 博士学位论文, 东北大学, 2018.
24 Asteman H, Svensson J E, Norell M, et al. Oxidation of Metals, 2000, 54(1-2), 11.
25 Yu L, Yang C H, Lin S N, et al. Materials Chemistry & Physics, 2008, 112, 566
26 Issartel J, Martoia S, Chariot F, et al. Corrosion Science, 2012, 59, 148.
[1] 李多娇, 程春龙, 乐启炽, 陈亮, 闫家仕. 镁合金氧化机理研究进展[J]. 材料导报, 2023, 37(1): 20120108-9.
[2] 吕绪明, 江涛, 张云汉, 苑建志, 杨凯, 党博, 张平则. 纯铜表面Ta-W合金层的抗高温氧化及摩擦行为[J]. 材料导报, 2022, 36(23): 22050017-5.
[3] 董志海, 李逸文, Aleksandr Babkin, 常云龙. 铁素体不锈钢焊缝晶粒细化技术的研究现状[J]. 材料导报, 2022, 36(21): 21040102-10.
[4] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[5] 于鸿莉, 杨宏昊, 马张博, 张原硕, 杨雯, 李永堂. 铁素体合金表面复合尖晶石涂层的研究进展[J]. 材料导报, 2022, 36(17): 20090087-8.
[6] 赖旭平, 李天方, 刘瑞, 孙红亮. 元素Nb、Hf、Zr对γ-TiAl合金抗氧化性能的影响[J]. 材料导报, 2021, 35(Z1): 374-377.
[7] 林启权, 周行, 董文正, 钦椿凯. CoO和Cr2O3复合掺杂对金属陶瓷的致密化及抗高温氧化性的影响[J]. 材料导报, 2020, 34(6): 6044-6048.
[8] 孙彬, 郝明欣, 尤宏广, 王皓, 曹光明. Fe-1Cr-0.2Si钢的高温氧化行为[J]. 材料导报, 2020, 34(16): 16131-16135.
[9] 马文彬, 郭京京, 骆红云, 唐君, 杨晓光. 低塑性加工对定向凝固镍基合金DZ125高温氧化性能的影响[J]. 材料导报, 2020, 34(10): 10093-10097.
[10] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[11] 蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
[12] 孟堃, 詹肇麟, 王远, 王伟, 于晓华, 荣菊. 振动助渗制备45钢表面铝化物涂层及其抗高温氧化性能[J]. 材料导报, 2018, 32(16): 2865-2869.
[13] 杜伟, 石倩, 代明江, 易健宏, 林松盛, 侯惠君. 电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能[J]. 《材料导报》期刊社, 2018, 32(13): 2267-2271.
[14] 谭晓晓, 马利影. 氧化物弥散强化高温合金抗氧化性能的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 121-127.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed