Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16131-16135    https://doi.org/10.11896/cldb.19060169
  金属与金属基复合材料 |
Fe-1Cr-0.2Si钢的高温氧化行为
孙彬1,2, 郝明欣1, 尤宏广1, 王皓2, 曹光明2
1 沈阳大学机械工程学院,沈阳 110044;
2 东北大学轧制与连轧自动化国家重点实验室,沈阳 110819
High Temperature Oxidation Behavior of Fe-1Cr-0.2Si Steel
SUN Bin1,2, HAO Mingxin1, YOU Hongguang1, WANG Hao2, CAO Guangming2
1 Mechanical Engineering Institute, Shenyang University, Shenyang 110044, China;
2 The State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 9398KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了明确三元系Fe-1Cr-0.2Si钢的高温氧化行为,采用管式电阻炉开展了空气条件下Fe-1Cr-0.2Si钢在900 ℃、1 000 ℃和1 100 ℃下氧化30 min的实验。结果表明: 900 ℃时氧化铁皮由两层组成,外层为Fe3O4层,内层为FeO、FeCr2O4和Fe2SiO4的混合层。在1 000 ℃和1 100 ℃时,氧化铁皮层最外层为Fe2O3层,中间层为Fe3O4层和内部独立的FeO层,内层为FeCr2O4和含Si氧化物的混合层。在三个氧化温度下,Fe-1Cr-0.2Si整体的氧化铁皮结构分为两层:外层Fe的氧化物是以阳离子向外扩散为主生成,内层Cr和Si的氧化物是以O离子向内扩散为主产生。FeO层的厚度随着温度的升高逐渐增大。Cr和Si元素富集层厚度比例随着温度的升高而减小,但Cr和Si在混合层中的富集程度有所增加。经高温氧化后没有发现Cr和Si的复合氧化物,但Cr和Si的富集区没有出现明显的分层。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙彬
郝明欣
尤宏广
王皓
曹光明
关键词:  高温氧化  氧化铁皮  Cr氧化物  Si氧化物    
Abstract: To understand the high temperature oxidation behavior of ternary system Fe-1Cr-0.2Si steel,the high temperature oxidation test of Fe-1Cr-0.2Si steel was carried out by tube furnace at 900 ℃, 1 000 ℃ and 1 100 ℃ in air for 30 min. The results show that the scale develop comprises an outermost magnetite layer, and an inner mixed oxides layer of wüstite, FeCr2O4 and Fe2SiO4 at 900 ℃. It has been found that oxide scales consist of two distinguishable zones at 1 000 ℃ and 1 100 ℃. Outer oxide scale formed at these temperatures comprises three layers, an outer hematite (Fe2O3) layer, an intermediate magnetite (Fe3O4) layer, and a thick inner wüstite (FeO) layer. Inner oxide layer is composed of FeCr2O4 and Si oxide. The scale on the Fe-1Cr-0.2Si steel at different temperature therefore, consists of two layers: the outer layer which grows outward by cation diffusion and is composed mainly of Fe oxide, and the inner layer which grows inward by O2 penetration and which contains a considerable amount of Cr and Si. The thickness of wüstite layer increases with increasing temperature from 900 ℃ to 1 100 ℃, while the thickness proportion of Cr and Si rich region decreases. But the accumulation quantity increases with the increasing temperature. There are no Si and Cr bimetal compound oxides formed, while the microstructure delamination isn’t observed in the Si and Cr oxides.
Key words:  high temperature oxidation    oxide scale    Cr oxide    Si oxide
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TG172.3  
基金资助: 国家自然科学基金(51301111);辽宁省自然基金(2019-KF-05-04);轧制技术及连轧自动化国家重点实验室开放课题基金(2017RALKFKT007)
通讯作者:  sunbin_shenyang@163.com   
作者简介:  孙彬,2011年博士毕业于东北大学,主要研究方向是钢铁材料的高温氧化。沈阳大学机械工程学院副院长,副教授,硕士研究生导师。沈阳市拔尖人才,辽宁省“百千万”人才,辽宁省自然基金评审专家。读博期间参与的鞍钢课题“连铸连轧工艺氧化铁皮控制技术”获得冶金科学技术一等奖,太钢课题“汽车大梁用黑皮钢技术开发”获得山西省科技进步二等奖。2018年进入东北大学和邯钢股份有限公司联合培养的博士后流动站工作。作为主持人,获得了国家自然基金青年基金、辽宁省自然基金、辽宁省教育厅一般项目和辽宁省自然基金(重点领域)联合基金等,同时参与了多家企业横向课题,发表论文20余篇,获得发明专利7项。
引用本文:    
孙彬, 郝明欣, 尤宏广, 王皓, 曹光明. Fe-1Cr-0.2Si钢的高温氧化行为[J]. 材料导报, 2020, 34(16): 16131-16135.
SUN Bin, HAO Mingxin, YOU Hongguang, WANG Hao, CAO Guangming. High Temperature Oxidation Behavior of Fe-1Cr-0.2Si Steel. Materials Reports, 2020, 34(16): 16131-16135.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060169  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16131
1 Galerie A, Henry S, Wouters Y, et al. Materials at High Temperatures,2017,21(1),105.
2 Zhang D Q, Xu J J, Zhao G Q, et al. Chinese Journal of Materials Research, 2008, 22(6), 599(in Chinese).
张都清, 徐敬军, 赵国群,等.材料研究学报, 2008, 22(6),599.
3 Ishitsuka T, Inoue Y, Ogawa H. Oxidation of Metals, 2004,61(3),125.
4 Xu L N, Wang B, Zhu J Y, et al. Applied Surface Science,2016,379(13),39.
5 Bauer R, Baccalaro M, Jeurgens L P, et al. Oxidation of Metals, 2008,69(3),265.
6 You C, Chen M F, Sun J S, et al. Ordnance Material Science and Engineering, 2003,26(6),23(in Chinese).
由臣, 陈民芳, 孙家枢,等. 兵器材料科学与工程, 2003,26(6),23.
7 Gui Y L, Zhang L,Wang Z L, et al. Materials Review B: Research Papers, 2013,27(11),343(in Chinese).
贵永亮,张良,王振磊,等. 材料导报:研究篇,2013,27(11),343.
8 Neil B, Gerald H M, Frederick S P. Introduction to the high-temperature oxidation of metals,2nd Ed. Cambridge University Press, London, 2006.
9 Chun C M, Ramanarayanant A. Oxidation of Metals,2007,67(10),215.
10 Xia W C, Zheng Y J, Dong B W, et al. Surface & Coatings Technology,2014,258(1),257.
11 Pettersson R, Liu L, Soud J.Corrosion Engineering Science and Technology,2005,40(4),211.
12 Shi X X, Ju X H, Cai N, et al.Transactions of Materials and Heat Treatment,2017,38(3),139(in Chinese).
史学星,鞠新华,蔡宁,等.材料热处理学报, 2017,38(3),139.
13 Michihisa F, Shigeru M, Shigenari H, et al. Oxidation of Metals,2001,55(4),401.
14 Chen R Y, Yuen W Y.Oxidation of Metals, 2003,59(9),433.
15 Balo S N, Yakuphanoglu F. Thermochimica Acta,2013,560(5),43.
16 Young D J. High temperature oxidation and corrosion of metals,Elsevier,Cambriage,2008.
17 Li T P. High temperature oxidation of metal and hot corrosion, Chemical Industry Press, China, 2003(in Chinese).
李铁藩. 金属高温氧化和热腐蚀, 化学工业出版社, 2003.
18 Liu X J. Research on high temperature oxidation behavior and controlling technology and application of oxide scale of hot-rolled non-oriented silicon steel. Ph.D. Thesis, Northeastern University, China,2014.
刘小江.热轧无取向硅钢高温氧化行为及其氧化铁皮控制技术的研究与应用. 博士学位论文,东北大学, 2014.
19 Issartel C, Buscailu H, Wang Y, et al. Oxidation of Metals,2011,76(2),127.
20 Chattopadhyay A, Chanda T. Scripta Materialia,2008,58(11),882.
21 Lucia S, Pablo R C, Yvan H, et al. Corrosion Science,2010,52(2),2044.
22 Peng X, Yan J, Zhou Y, et al.Acta Materialia,2005,53(12),5079.
23 Asteman H, Svensson J E, Johansson L G. Oxidation of Metals, 2002, 57(1),193.
24 Neil B, Gerald H M, Fred S P. Translated by Xin L, Wang W. Introduction to high-temperature oxidation of metals, Higher Education Press, Beijing, 2010(in Chinese).
Neil B, Gerald H M, Fred S P,著.辛丽, 王文,译.金属高温氧化导论,高等教育出版社, 2010.
25 Wu Q L,Dong X M,Yang J Q.Corrosion Science,2013,75(5),400.
26 Xu L N, Guo S Q,Chang T H, et al. Applied Surface Science, 2013,270(12),395.
[1] 林启权, 周行, 董文正, 钦椿凯. CoO和Cr2O3复合掺杂对金属陶瓷的致密化及抗高温氧化性的影响[J]. 材料导报, 2020, 34(6): 6044-6048.
[2] 马文彬, 郭京京, 骆红云, 唐君, 杨晓光. 低塑性加工对定向凝固镍基合金DZ125高温氧化性能的影响[J]. 材料导报, 2020, 34(10): 10093-10097.
[3] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[4] 蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
[5] 李志峰,何永全,曹光明,汤军舰,刘振宇. 热轧钢材氧化铁皮的高温形变机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 259-262.
[6] 孟堃, 詹肇麟, 王远, 王伟, 于晓华, 荣菊. 振动助渗制备45钢表面铝化物涂层及其抗高温氧化性能[J]. 材料导报, 2018, 32(16): 2865-2869.
[7] 杜伟, 石倩, 代明江, 易健宏, 林松盛, 侯惠君. 电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能[J]. 《材料导报》期刊社, 2018, 32(13): 2267-2271.
[8] 谭晓晓, 马利影. 氧化物弥散强化高温合金抗氧化性能的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 121-127.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed