Research Progress of the High Temperature Oxidation Resistance of Oxide Dispersion Strengthened Superalloys
TAN Xiaoxiao1,2, MA Liying2
1 Engineering Training Center, Shanghai University of Engineering Science, Shanghai 201620; 2 School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620
Abstract: Oxide dispersion strengthened (ODS) commercial superalloys, with fine high temperature mechanical properties because of the oxide dispersion strengthening effect, are widely developed and applied on the high temperature components of various fields, such as aviation, aerospace, energy, automobile and so on. It is found that the fine oxide particles could effectively improve not only the strength, but also the high temperature oxidation resistance of alloy. The effects of different kinds of oxides, oxide size and oxide content on the high temperature oxidation resistance of superalloys are provided herein on recent advances, focusing on the similarities and differences in the oxidation mechanism of various oxides (i.e. reactive element oxides and inactive element oxides) from the aspect of the initial oxidation, the oxidation kinetics, the oxide scale growth mechanism and adhesion. Finally, the issues that warrant further studies are proposed.
谭晓晓, 马利影. 氧化物弥散强化高温合金抗氧化性能的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 121-127.
TAN Xiaoxiao, MA Liying. Research Progress of the High Temperature Oxidation Resistance of Oxide Dispersion Strengthened Superalloys. Materials Reports, 2017, 31(11): 121-127.
1 Unocic K A, Pint B A, Hoelzer D T. Advanced TEM characterization of oxide nanoparticles in ODS Fe-12Cr-5Al alloys[J]. J Mater Sci,2016,51(20):9190.
2 Wang M, Zhou Z, Sun H, et al. Effects of plastic deformations on microstructure and mechanical properties of ODS-310 austenitic steel[J]. J Nuclear Mater,2012,430(1-3):259.
3 Miller M K, Russell K F, Hoelzer D T. Characterization of precipitates in MA/ODS ferritic alloys[J]. J Nuclear Mater,2006,351(1-3):261.
4 Liu G Z, Tian Y, Shan B Q. Oxide dispersions strengthened superalloys[J]. Powder Metall Technol,2001,19(1):20(in Chinese).
柳光祖,田耘,单秉权. 氧化物弥散强化高温合金[J]. 粉末冶金技术,2001,19(1):20.
5 Yurechko M, Schroer C, Skrypnik A, et al. Creep-to-rupture of 12Cr- and 14Cr-ODS steels in oxygen-controlled lead and air at 650 ℃[J]. J Nuclear Mater,2014,450(1-3):88.
6 Yang S L, Wang F H, Zhu S L. Effect of sulfur segregation on the oxidation resistance of superalloys[J]. Corros Sci Protection Tech-nol,2000,12(6):350(in Chinese).
杨松岚,王福会,朱圣龙. 硫偏聚对高温合金氧化性能影响的研究进展[J]. 腐蚀科学与防护技术,2000,12(6):350.
7 Zhao S Q, Dong J X, Zhang M C, et al. Oxidation behaviors of new Ni-based superalloy at 950 ℃ and 1 000 ℃[J]. Rare Metal Mater Eng,2005,34(2):208(in Chinese).
赵双群,董建新,张麦仓,等. 新型镍基高温合金在950 ℃和 1000 ℃的氧化行为[J]. 稀有金属材料与工程,2005,34(2):208.
8 Dryepondt S, Turan J, Leonard D, et al. Long-term oxidation testing and lifetime modeling of cast and ODS FeCrAl alloys[J]. Oxidation Metals,2017,87(1):215.
9 Gabriele F D, Amore S, et al. Corrosion behaviour of 12Cr-ODS steel in molten lead[J]. Nuclear Eng Design,2014,280:69.
10 Jönsson B, Lu Q, Chandrasekaran D, et al. Oxidation and creep limited lifetime of kanthal APMTR, a dispersion strengthened FeCrAlMo alloy designed for strength and oxidation resistance at high temperatures[J]. Oxidation Metals,2013,79(1):29.
11 Pint B A, Hobbs L W. The oxidation behavior of Y2O3-dispersed beta-NiAl[J]. Oxidation Metals, 2004, 61(3-4):273.
12 Li D, Guo H, et al. Cyclic oxidation of β-NiAl with va-rious reactive element dopants at 1200 ℃[J]. Corros Sci,2013,66:125.
13 Li M S,Zhang Y M. A review on effect of reactive elements on oxidation of metals [J]. Corros Sci Protection Technol, 2001,13(6):333(in Chinese).
李美栓,张亚明. 活性元素对合金高温氧化的作用机制[J]. 腐蚀科学与防护技术,2001,13(6):333
14 Hou P Y. The reactive element effect-Past, present, and future [J]. Mater Sci Forum,2011,696:39
15 Naumenko D, Pint B A, Quadakkers W J. Current thoughts on the active element effects in alumina-forming systems: In memory of John Stringer[J]. Oxidation Metals,2016,86(1):1.
16 Peng X, et al. High temperature corrosion of nano-crystalline metallic materials[J]. Acta Metall Sin,2014,50(2):202(in Chinese).
彭晓,等. 纳米晶金属材料的高温腐蚀行 [J]. 金属学报,2014,50(2):202.
17 Heuer A H, Hovis D B, Smialek J L, et al. Alumina scale formation: A new perspective[J]. J Am Ceram Soc,2011,94(s1):s146.
18 Wright I G, Wilcox B A, Jaffee R I. The high-temperature oxidation of Ni-20%Cr alloys containing various oxide dispersions [J]. Oxidation Metals,1975,9(3):275.
19 Hou P Y, Stringer J. The effect of reactive element additions on the selective oxidation, growth and adhesion of chromia scales[J]. Mater Sci Eng A,1995,202(1-2):1.
20 Whittle D P, Eldahshan M E, Stringer J. Oxidation behavior of cobalt-base alloys containing dispersed oxides formed by internal oxidation [J]. Corros Sci,1977,17(11):879.
21 Stringer J, Wright I G. The high-temperature oxidation of cobalt-21 wt.% chromium-3 vol.% Y2O3 alloys [J]. Oxidation Metals,1972,5(1):59.
22 Seltzer M S, Wilcox B A. Diffusion of chromium and aluminum in Ni-20Cr and TDNiCr (Ni-20Cr-2ThO2) [J]. Metall Trans,1972,3(9):2357.
23 Pint B A, Leibowitz J, Devan J H. The effect of an oxide dispersion on the critical Al content in Fe-Al alloys [J]. Oxidation Metals,1999,51(1):181.
24 Hou P Y, Stringer J. The influence of ion-implanted yttrium on the selective oxidation of chromium in Co-25 wt.% Cr[J]. Oxidation Metals,1988,29(1):45.
25 Hou P Y, Stringer J. The effect of surface-applied reactive metal oxi-des on the high temperature oxidation of alloys[J]. Mater Sci Eng,1987,87:295.
26 Hou P Y, Stringer J. Effect of surface-applied reactive element oxide on the oxidation of binary alloys containing Cr[J]. J Electrochem Soc,1987,134 (7):1836.
27 Whittle D P, Stringer J. Improvements in high-temperature oxidation resistance by additions of reactive elements or oxide dispersions[J]. Philosophical Transactions of the Royal Society of London Series A Mathematical Physical and Eng Sci,1980,295(1413):309.
28 Stringer J, Hed A Z, Wallwork G R, et al. The effect of a thoria dispersion on the high temperature oxidation of chromium [J]. Corros Sci,1972,12(8):625.
29 Hou P Y. Segregation phenomena at thermally grown Al2O3/alloy interfaces[J]. Annual Rev Mater Res,2008, 38:275.
30 Pint B A, MartinJ R, Hobbs L W. The oxidation mechanism of θ-Al2O3 scales[J]. Solid State Ionics,1995,78(1-2):99.
31 Doychak J, Rühle M. TEM studies of oxidized NiAl and Ni3Al cross sections[J]. Oxidation Metals,1989,31(5):431.
32 Doychak J, et al. Transient oxidation of single-crystal β-NiAl[J]. Metall Trans A- Phys Metall Mater Sci,1989,20(3):499.
33 Pint B A, Hobbs L W. Limitations on the use of ion implantation for the study of the reactive element effect in beta-NiAl[J]. J Electrochem Soc,1994,141(9):2443.
34 Bagwell R B, Messing G L, Howell P R. The formation of α-Al2O3 from θ-Al2O3: The relevance of a “critical size” and: Diffusional nucleation or “synchro-shear”[J]. J Mater Sci,2001,36:1833.
35 Tucker D S, Bleier A. Gamma-to-alpha transformation in spherical aluminum oxide powders[J]. J Am Ceram Soc,1985,68(7):C-163.
36 Burtin P, Brunelle J P, Pijolat M, et al. Influence of surface area and additives on the thermal stability of transition alumina catalyst supports. Ⅱ: Kinetic model and interpretation[J]. Appl Catal,1987,34(0):239
37 Burtin P, Brunelle J P, Pijolat M, et al. Influence of surface area and additives on the thermal stability of transition alumina catalyst supports. Ⅰ: Kinetic data[J]. Appl Catal,1987,34(0):225.
38 Pint B A, Treska M, Hobbs L W. The effect of various oxide dispersions on the phase composition and morphology of Al2O3 scales grown on beta-NiAl[J]. Oxidation Metals,1997,47(1-2):1.
39 Hou P Y. Impurity effects on alumina scale growth[J]. J Am Ceram Soc,2003,86(4):660.
40 Peng X, Guan Y, Dong Z, et al. A fundamental aspect of the growth process of alumina scale on a metal with dispersion CeO2 na-noparticles[J]. Corros Sci,2011,53(5):1954.
41 Cotell C M, Yurek G J, Hussey R J, et al. The influence of grain-boundary segregation of Y in Cr2O3 on the oxidation of Cr metal. Ⅱ. Effects of temperature and dopant concentration[J]. Oxidation Metals,1990,34(3):173.
42 Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect[J]. Oxidation Metals,1996,45(1-2):1.
43 Milas I, Hinnemann B, Carter E A. Structure of and ion segregation to an alumina grain boundary: Implications for growth and creep[J]. J Mater Res,2008,23(5):1494.
44 Pint B A, Alexander K B. Grain boundary segregation of cation do-pants in alpha-Al2O3 scales[J]. Fundamental Aspects of High Temperature Corrosion,1997,96(26):97.
45 Galmarini S, Aschauer U, et al. Atomistic simulation of Y-doped α-alumina interfaces[J]. J Am Ceram Soc,2008,91(11):3643.
46 Buban J P, Matsunaga K, Chen J. Grain boundary strengthening in alumina by rare earth impurities[J]. Science,2006,311:212.
47 Gemming T, Stefan N, Wolfgang K, et al. Structure and chemistry of symmetrical tilt grain boundaries in α-Al2O3: Ⅰ, Bicrystals with “clean” interface[J]. J Am Ceram Soc,2003,86(4):581.
48 Michels H T. The effect of dispersed reactive metal oxides on the oxi-dation resistance of nickel-20 Wt pct chromium alloys[J]. Metall Trans A,1976,3(7):379.
49 Oksiuta Z.High-temperature oxidation resistance of ultrafine-grained 14% Cr ODS ferritic steel[J]. J Mater Sci,2013,48(13):4801.
50 Pint B A, Tortorelli P F, Wright I G. The oxidation behavior of ODS iron aluminides[J]. Mater Corros,1996,47:663.
51 Pint B A, Garrattreed A J, Hobbs L W. The reactive element effect in commercial ODS FeCrAl alloys[J]. Mater High Temperatures,1995,13(1):3.
52 Pint B A. The oxidation behavior of oxide-dispersed beta-NiAl: Ⅰ. Short-term performance at 1200 ℃[J]. Oxidation Metals,1998,5-6(49):531.
53 Pint B A. Characterization of the high temperature oxidation of TBC-coated oxide-dispersed β-NiAl substrates[J]. Mater High Temperatures,1997,4(14):403.
54 Sun D, Liang C, Shang J, et al. Effect of Y2O3 contents on oxidation resistance at 1150 ℃ and mechanical properties at room tempe-rature of ODS Ni-20Cr-5Al alloy[J]. Appl Surf Sci,2016,385:587.
55 Tan X, Peng X, Wang F. The effect of grain refinement on the adhesion of an alumina scale on an aluminide coating [J]. Corros Sci,2014,85:280.
56 Hou P Y, Priimak K. Interfacial segregation, pore formation, and scale adhesion on NiAl alloys[J]. Oxidation Metals,2006,63(1):113.
57 Lim H, Park S, Kang S. The effect of particle size of alumina dispersions on the oxidation resistance of Ni-Cr alloys[J]. Oxidation Metals,1997,48(5):391.
58 Klower J. Factors affecting the oxidation behaviour of thin Fe-Cr-Al foils. Part Ⅱ: The effect of alloying elements: Overdoping[J]. Mater Corros,2000,51:373.