Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 121-127    https://doi.org/10.11896/j.issn.1005-023X.2017.011.017
  新材料新技术 |
氧化物弥散强化高温合金抗氧化性能的研究进展*
谭晓晓1,2, 马利影2
1 上海工程技术大学工程实训中心,上海201620;
2 上海工程技术大学材料工程学院,上海201620
Research Progress of the High Temperature Oxidation Resistance of Oxide Dispersion Strengthened Superalloys
TAN Xiaoxiao1,2, MA Liying2
1 Engineering Training Center, Shanghai University of Engineering Science, Shanghai 201620;
2 School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620
下载:  全 文 ( PDF ) ( 1367KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氧化物弥散强化商业高温合金因氧化物颗粒在基体中的弥散强化作用而具有较好的高温力学性能,如今被广泛应用于航空航天、能源、汽车等领域的高温部件。研究发现,氧化物颗粒的掺杂不仅可以使合金基体具有优异的高温强度,还可以显著提高基体的抗氧化性能。概述了氧化物颗粒种类、尺寸和含量对高温合金抗氧化性能的影响,从合金初期氧化行为、氧化膜生长速度、生长机制、粘附性能等角度重点关注不同性质氧化物(如活性元素氧化物和非活性元素氧化物)弥散质点在氧化过程中作用机理的异同,最后对未来的研究方向做出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭晓晓
马利影
关键词:  高温合金  高温氧化  氧化物掺杂  活性元素效应    
Abstract: Oxide dispersion strengthened (ODS) commercial superalloys, with fine high temperature mechanical properties because of the oxide dispersion strengthening effect, are widely developed and applied on the high temperature components of various fields, such as aviation, aerospace, energy, automobile and so on. It is found that the fine oxide particles could effectively improve not only the strength, but also the high temperature oxidation resistance of alloy. The effects of different kinds of oxides, oxide size and oxide content on the high temperature oxidation resistance of superalloys are provided herein on recent advances, focusing on the similarities and differences in the oxidation mechanism of various oxides (i.e. reactive element oxides and inactive element oxides) from the aspect of the initial oxidation, the oxidation kinetics, the oxide scale growth mechanism and adhesion. Finally, the issues that warrant further studies are proposed.
Key words:  superalloy    high temperature oxidation    oxide dispersion    reactive element effect
               出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TG171  
基金资助: 国家自然科学基金(51501109);上海高校青年教师培养资助计划(ZZGCD15059);上海工程技术大学科研启动项目(校启2015-47)
作者简介:  谭晓晓:女,1988年生,博士,讲师,硕士研究生导师,主要从事金属材料高温腐蚀与防护的研究 E-mail:xxtan@sues.edu.cn
引用本文:    
谭晓晓, 马利影. 氧化物弥散强化高温合金抗氧化性能的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 121-127.
TAN Xiaoxiao, MA Liying. Research Progress of the High Temperature Oxidation Resistance of Oxide Dispersion Strengthened Superalloys. Materials Reports, 2017, 31(11): 121-127.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.017  或          http://www.mater-rep.com/CN/Y2017/V31/I11/121
1 Unocic K A, Pint B A, Hoelzer D T. Advanced TEM characterization of oxide nanoparticles in ODS Fe-12Cr-5Al alloys[J]. J Mater Sci,2016,51(20):9190.
2 Wang M, Zhou Z, Sun H, et al. Effects of plastic deformations on microstructure and mechanical properties of ODS-310 austenitic steel[J]. J Nuclear Mater,2012,430(1-3):259.
3 Miller M K, Russell K F, Hoelzer D T. Characterization of precipitates in MA/ODS ferritic alloys[J]. J Nuclear Mater,2006,351(1-3):261.
4 Liu G Z, Tian Y, Shan B Q. Oxide dispersions strengthened superalloys[J]. Powder Metall Technol,2001,19(1):20(in Chinese).
柳光祖,田耘,单秉权. 氧化物弥散强化高温合金[J]. 粉末冶金技术,2001,19(1):20.
5 Yurechko M, Schroer C, Skrypnik A, et al. Creep-to-rupture of 12Cr- and 14Cr-ODS steels in oxygen-controlled lead and air at 650 ℃[J]. J Nuclear Mater,2014,450(1-3):88.
6 Yang S L, Wang F H, Zhu S L. Effect of sulfur segregation on the oxidation resistance of superalloys[J]. Corros Sci Protection Tech-nol,2000,12(6):350(in Chinese).
杨松岚,王福会,朱圣龙. 硫偏聚对高温合金氧化性能影响的研究进展[J]. 腐蚀科学与防护技术,2000,12(6):350.
7 Zhao S Q, Dong J X, Zhang M C, et al. Oxidation behaviors of new Ni-based superalloy at 950 ℃ and 1 000 ℃[J]. Rare Metal Mater Eng,2005,34(2):208(in Chinese).
赵双群,董建新,张麦仓,等. 新型镍基高温合金在950 ℃和 1000 ℃的氧化行为[J]. 稀有金属材料与工程,2005,34(2):208.
8 Dryepondt S, Turan J, Leonard D, et al. Long-term oxidation testing and lifetime modeling of cast and ODS FeCrAl alloys[J]. Oxidation Metals,2017,87(1):215.
9 Gabriele F D, Amore S, et al. Corrosion behaviour of 12Cr-ODS steel in molten lead[J]. Nuclear Eng Design,2014,280:69.
10 Jönsson B, Lu Q, Chandrasekaran D, et al. Oxidation and creep limited lifetime of kanthal APMTR, a dispersion strengthened FeCrAlMo alloy designed for strength and oxidation resistance at high temperatures[J]. Oxidation Metals,2013,79(1):29.
11 Pint B A, Hobbs L W. The oxidation behavior of Y2O3-dispersed beta-NiAl[J]. Oxidation Metals, 2004, 61(3-4):273.
12 Li D, Guo H, et al. Cyclic oxidation of β-NiAl with va-rious reactive element dopants at 1200 ℃[J]. Corros Sci,2013,66:125.
13 Li M S,Zhang Y M. A review on effect of reactive elements on oxidation of metals [J]. Corros Sci Protection Technol, 2001,13(6):333(in Chinese).
李美栓,张亚明. 活性元素对合金高温氧化的作用机制[J]. 腐蚀科学与防护技术,2001,13(6):333
14 Hou P Y. The reactive element effect-Past, present, and future [J]. Mater Sci Forum,2011,696:39
15 Naumenko D, Pint B A, Quadakkers W J. Current thoughts on the active element effects in alumina-forming systems: In memory of John Stringer[J]. Oxidation Metals,2016,86(1):1.
16 Peng X, et al. High temperature corrosion of nano-crystalline metallic materials[J]. Acta Metall Sin,2014,50(2):202(in Chinese).
彭晓,等. 纳米晶金属材料的高温腐蚀行 [J]. 金属学报,2014,50(2):202.
17 Heuer A H, Hovis D B, Smialek J L, et al. Alumina scale formation: A new perspective[J]. J Am Ceram Soc,2011,94(s1):s146.
18 Wright I G, Wilcox B A, Jaffee R I. The high-temperature oxidation of Ni-20%Cr alloys containing various oxide dispersions [J]. Oxidation Metals,1975,9(3):275.
19 Hou P Y, Stringer J. The effect of reactive element additions on the selective oxidation, growth and adhesion of chromia scales[J]. Mater Sci Eng A,1995,202(1-2):1.
20 Whittle D P, Eldahshan M E, Stringer J. Oxidation behavior of cobalt-base alloys containing dispersed oxides formed by internal oxidation [J]. Corros Sci,1977,17(11):879.
21 Stringer J, Wright I G. The high-temperature oxidation of cobalt-21 wt.% chromium-3 vol.% Y2O3 alloys [J]. Oxidation Metals,1972,5(1):59.
22 Seltzer M S, Wilcox B A. Diffusion of chromium and aluminum in Ni-20Cr and TDNiCr (Ni-20Cr-2ThO2) [J]. Metall Trans,1972,3(9):2357.
23 Pint B A, Leibowitz J, Devan J H. The effect of an oxide dispersion on the critical Al content in Fe-Al alloys [J]. Oxidation Metals,1999,51(1):181.
24 Hou P Y, Stringer J. The influence of ion-implanted yttrium on the selective oxidation of chromium in Co-25 wt.% Cr[J]. Oxidation Metals,1988,29(1):45.
25 Hou P Y, Stringer J. The effect of surface-applied reactive metal oxi-des on the high temperature oxidation of alloys[J]. Mater Sci Eng,1987,87:295.
26 Hou P Y, Stringer J. Effect of surface-applied reactive element oxide on the oxidation of binary alloys containing Cr[J]. J Electrochem Soc,1987,134 (7):1836.
27 Whittle D P, Stringer J. Improvements in high-temperature oxidation resistance by additions of reactive elements or oxide dispersions[J]. Philosophical Transactions of the Royal Society of London Series A Mathematical Physical and Eng Sci,1980,295(1413):309.
28 Stringer J, Hed A Z, Wallwork G R, et al. The effect of a thoria dispersion on the high temperature oxidation of chromium [J]. Corros Sci,1972,12(8):625.
29 Hou P Y. Segregation phenomena at thermally grown Al2O3/alloy interfaces[J]. Annual Rev Mater Res,2008, 38:275.
30 Pint B A, MartinJ R, Hobbs L W. The oxidation mechanism of θ-Al2O3 scales[J]. Solid State Ionics,1995,78(1-2):99.
31 Doychak J, Rühle M. TEM studies of oxidized NiAl and Ni3Al cross sections[J]. Oxidation Metals,1989,31(5):431.
32 Doychak J, et al. Transient oxidation of single-crystal β-NiAl[J]. Metall Trans A- Phys Metall Mater Sci,1989,20(3):499.
33 Pint B A, Hobbs L W. Limitations on the use of ion implantation for the study of the reactive element effect in beta-NiAl[J]. J Electrochem Soc,1994,141(9):2443.
34 Bagwell R B, Messing G L, Howell P R. The formation of α-Al2O3 from θ-Al2O3: The relevance of a “critical size” and: Diffusional nucleation or “synchro-shear”[J]. J Mater Sci,2001,36:1833.
35 Tucker D S, Bleier A. Gamma-to-alpha transformation in spherical aluminum oxide powders[J]. J Am Ceram Soc,1985,68(7):C-163.
36 Burtin P, Brunelle J P, Pijolat M, et al. Influence of surface area and additives on the thermal stability of transition alumina catalyst supports. Ⅱ: Kinetic model and interpretation[J]. Appl Catal,1987,34(0):239
37 Burtin P, Brunelle J P, Pijolat M, et al. Influence of surface area and additives on the thermal stability of transition alumina catalyst supports. Ⅰ: Kinetic data[J]. Appl Catal,1987,34(0):225.
38 Pint B A, Treska M, Hobbs L W. The effect of various oxide dispersions on the phase composition and morphology of Al2O3 scales grown on beta-NiAl[J]. Oxidation Metals,1997,47(1-2):1.
39 Hou P Y. Impurity effects on alumina scale growth[J]. J Am Ceram Soc,2003,86(4):660.
40 Peng X, Guan Y, Dong Z, et al. A fundamental aspect of the growth process of alumina scale on a metal with dispersion CeO2 na-noparticles[J]. Corros Sci,2011,53(5):1954.
41 Cotell C M, Yurek G J, Hussey R J, et al. The influence of grain-boundary segregation of Y in Cr2O3 on the oxidation of Cr metal. Ⅱ. Effects of temperature and dopant concentration[J]. Oxidation Metals,1990,34(3):173.
42 Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect[J]. Oxidation Metals,1996,45(1-2):1.
43 Milas I, Hinnemann B, Carter E A. Structure of and ion segregation to an alumina grain boundary: Implications for growth and creep[J]. J Mater Res,2008,23(5):1494.
44 Pint B A, Alexander K B. Grain boundary segregation of cation do-pants in alpha-Al2O3 scales[J]. Fundamental Aspects of High Temperature Corrosion,1997,96(26):97.
45 Galmarini S, Aschauer U, et al. Atomistic simulation of Y-doped α-alumina interfaces[J]. J Am Ceram Soc,2008,91(11):3643.
46 Buban J P, Matsunaga K, Chen J. Grain boundary strengthening in alumina by rare earth impurities[J]. Science,2006,311:212.
47 Gemming T, Stefan N, Wolfgang K, et al. Structure and chemistry of symmetrical tilt grain boundaries in α-Al2O3: Ⅰ, Bicrystals with “clean” interface[J]. J Am Ceram Soc,2003,86(4):581.
48 Michels H T. The effect of dispersed reactive metal oxides on the oxi-dation resistance of nickel-20 Wt pct chromium alloys[J]. Metall Trans A,1976,3(7):379.
49 Oksiuta Z.High-temperature oxidation resistance of ultrafine-grained 14% Cr ODS ferritic steel[J]. J Mater Sci,2013,48(13):4801.
50 Pint B A, Tortorelli P F, Wright I G. The oxidation behavior of ODS iron aluminides[J]. Mater Corros,1996,47:663.
51 Pint B A, Garrattreed A J, Hobbs L W. The reactive element effect in commercial ODS FeCrAl alloys[J]. Mater High Temperatures,1995,13(1):3.
52 Pint B A. The oxidation behavior of oxide-dispersed beta-NiAl: Ⅰ. Short-term performance at 1200 ℃[J]. Oxidation Metals,1998,5-6(49):531.
53 Pint B A. Characterization of the high temperature oxidation of TBC-coated oxide-dispersed β-NiAl substrates[J]. Mater High Temperatures,1997,4(14):403.
54 Sun D, Liang C, Shang J, et al. Effect of Y2O3 contents on oxidation resistance at 1150 ℃ and mechanical properties at room tempe-rature of ODS Ni-20Cr-5Al alloy[J]. Appl Surf Sci,2016,385:587.
55 Tan X, Peng X, Wang F. The effect of grain refinement on the adhesion of an alumina scale on an aluminide coating [J]. Corros Sci,2014,85:280.
56 Hou P Y, Priimak K. Interfacial segregation, pore formation, and scale adhesion on NiAl alloys[J]. Oxidation Metals,2006,63(1):113.
57 Lim H, Park S, Kang S. The effect of particle size of alumina dispersions on the oxidation resistance of Ni-Cr alloys[J]. Oxidation Metals,1997,48(5):391.
58 Klower J. Factors affecting the oxidation behaviour of thin Fe-Cr-Al foils. Part Ⅱ: The effect of alloying elements: Overdoping[J]. Mater Corros,2000,51:373.
[1] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[2] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[3] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[4] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[5] 蒋智秋, 陈泉志, 董婉冰, 童庆, 李伟洲. Al对激光熔覆镍基合金涂层组织与性能的影响[J]. 材料导报, 2019, 33(12): 2035-2039.
[6] 张 勇,李佩桓,贾崇林,王 涛,李鑫旭,李 阳. 变形高温合金纯净熔炼设备及工艺研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1496-1506.
[7] 徐仰涛, 娄德超, 陈宝林. 镍含量对Co-8.8Al-9.8W合金中γ'相高温粗化的影响[J]. 材料导报, 2018, 32(6): 943-946.
[8] 尚根峰, 黄嘉鹏, 汪航. Y,La改性Ni-10Cr-5Al合金的循环氧化行为研究[J]. 《材料导报》期刊社, 2018, 32(4): 584-588.
[9] 霍苗, 刘林, 黄太文, 杨文超, 李亚峰, 王晓娟, 张军, 傅恒志. 镍基单晶高温合金小角度晶界的形成机制、影响因素与控制措施[J]. 材料导报, 2018, 32(19): 3394-3404.
[10] 孟堃, 詹肇麟, 王远, 王伟, 于晓华, 荣菊. 振动助渗制备45钢表面铝化物涂层及其抗高温氧化性能[J]. 材料导报, 2018, 32(16): 2865-2869.
[11] 张传臣, 赵春玲, 张田仓, 李辉. K447A+GH4169惯性摩擦焊工艺试验研究[J]. 材料导报, 2018, 32(16): 2783-2786.
[12] 杜伟, 石倩, 代明江, 易健宏, 林松盛, 侯惠君. 电弧离子镀NiCrAlY和NiCoCrAlYHfSi涂层抗高温氧化性能[J]. 《材料导报》期刊社, 2018, 32(13): 2267-2271.
[13] 丁青青,余倩,李吉学,张泽. 铼在镍基高温合金中作用机理的研究现状[J]. 《材料导报》期刊社, 2018, 32(1): 110-115.
[14] 李亚峰, 刘林, 黄太文, 张军, 傅恒志. 镍基单晶高温合金涡轮叶片缘板杂晶的研究进展*[J]. CLDB, 2017, 31(9): 118-122.
[15] 丁雨田,豆正义,高钰璧,高 鑫,李海峰,刘德学. 原位观察不同冷却速率下GH3625合金的凝固过程[J]. 《材料导报》期刊社, 2017, 31(24): 150-155.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed