Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 121-127    https://doi.org/10.11896/j.issn.1005-023X.2017.011.017
  新材料新技术 |
氧化物弥散强化高温合金抗氧化性能的研究进展*
谭晓晓1,2, 马利影2
1 上海工程技术大学工程实训中心,上海201620;
2 上海工程技术大学材料工程学院,上海201620
Research Progress of the High Temperature Oxidation Resistance of Oxide Dispersion Strengthened Superalloys
TAN Xiaoxiao1,2, MA Liying2
1 Engineering Training Center, Shanghai University of Engineering Science, Shanghai 201620;
2 School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620
下载:  全 文 ( PDF ) ( 1367KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氧化物弥散强化商业高温合金因氧化物颗粒在基体中的弥散强化作用而具有较好的高温力学性能,如今被广泛应用于航空航天、能源、汽车等领域的高温部件。研究发现,氧化物颗粒的掺杂不仅可以使合金基体具有优异的高温强度,还可以显著提高基体的抗氧化性能。概述了氧化物颗粒种类、尺寸和含量对高温合金抗氧化性能的影响,从合金初期氧化行为、氧化膜生长速度、生长机制、粘附性能等角度重点关注不同性质氧化物(如活性元素氧化物和非活性元素氧化物)弥散质点在氧化过程中作用机理的异同,最后对未来的研究方向做出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭晓晓
马利影
关键词:  高温合金  高温氧化  氧化物掺杂  活性元素效应    
Abstract: Oxide dispersion strengthened (ODS) commercial superalloys, with fine high temperature mechanical properties because of the oxide dispersion strengthening effect, are widely developed and applied on the high temperature components of various fields, such as aviation, aerospace, energy, automobile and so on. It is found that the fine oxide particles could effectively improve not only the strength, but also the high temperature oxidation resistance of alloy. The effects of different kinds of oxides, oxide size and oxide content on the high temperature oxidation resistance of superalloys are provided herein on recent advances, focusing on the similarities and differences in the oxidation mechanism of various oxides (i.e. reactive element oxides and inactive element oxides) from the aspect of the initial oxidation, the oxidation kinetics, the oxide scale growth mechanism and adhesion. Finally, the issues that warrant further studies are proposed.
Key words:  superalloy    high temperature oxidation    oxide dispersion    reactive element effect
出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TG171  
基金资助: 国家自然科学基金(51501109);上海高校青年教师培养资助计划(ZZGCD15059);上海工程技术大学科研启动项目(校启2015-47)
作者简介:  谭晓晓:女,1988年生,博士,讲师,硕士研究生导师,主要从事金属材料高温腐蚀与防护的研究 E-mail:xxtan@sues.edu.cn
引用本文:    
谭晓晓, 马利影. 氧化物弥散强化高温合金抗氧化性能的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 121-127.
TAN Xiaoxiao, MA Liying. Research Progress of the High Temperature Oxidation Resistance of Oxide Dispersion Strengthened Superalloys. Materials Reports, 2017, 31(11): 121-127.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.017  或          https://www.mater-rep.com/CN/Y2017/V31/I11/121
1 Unocic K A, Pint B A, Hoelzer D T. Advanced TEM characterization of oxide nanoparticles in ODS Fe-12Cr-5Al alloys[J]. J Mater Sci,2016,51(20):9190.
2 Wang M, Zhou Z, Sun H, et al. Effects of plastic deformations on microstructure and mechanical properties of ODS-310 austenitic steel[J]. J Nuclear Mater,2012,430(1-3):259.
3 Miller M K, Russell K F, Hoelzer D T. Characterization of precipitates in MA/ODS ferritic alloys[J]. J Nuclear Mater,2006,351(1-3):261.
4 Liu G Z, Tian Y, Shan B Q. Oxide dispersions strengthened superalloys[J]. Powder Metall Technol,2001,19(1):20(in Chinese).
柳光祖,田耘,单秉权. 氧化物弥散强化高温合金[J]. 粉末冶金技术,2001,19(1):20.
5 Yurechko M, Schroer C, Skrypnik A, et al. Creep-to-rupture of 12Cr- and 14Cr-ODS steels in oxygen-controlled lead and air at 650 ℃[J]. J Nuclear Mater,2014,450(1-3):88.
6 Yang S L, Wang F H, Zhu S L. Effect of sulfur segregation on the oxidation resistance of superalloys[J]. Corros Sci Protection Tech-nol,2000,12(6):350(in Chinese).
杨松岚,王福会,朱圣龙. 硫偏聚对高温合金氧化性能影响的研究进展[J]. 腐蚀科学与防护技术,2000,12(6):350.
7 Zhao S Q, Dong J X, Zhang M C, et al. Oxidation behaviors of new Ni-based superalloy at 950 ℃ and 1 000 ℃[J]. Rare Metal Mater Eng,2005,34(2):208(in Chinese).
赵双群,董建新,张麦仓,等. 新型镍基高温合金在950 ℃和 1000 ℃的氧化行为[J]. 稀有金属材料与工程,2005,34(2):208.
8 Dryepondt S, Turan J, Leonard D, et al. Long-term oxidation testing and lifetime modeling of cast and ODS FeCrAl alloys[J]. Oxidation Metals,2017,87(1):215.
9 Gabriele F D, Amore S, et al. Corrosion behaviour of 12Cr-ODS steel in molten lead[J]. Nuclear Eng Design,2014,280:69.
10 Jönsson B, Lu Q, Chandrasekaran D, et al. Oxidation and creep limited lifetime of kanthal APMTR, a dispersion strengthened FeCrAlMo alloy designed for strength and oxidation resistance at high temperatures[J]. Oxidation Metals,2013,79(1):29.
11 Pint B A, Hobbs L W. The oxidation behavior of Y2O3-dispersed beta-NiAl[J]. Oxidation Metals, 2004, 61(3-4):273.
12 Li D, Guo H, et al. Cyclic oxidation of β-NiAl with va-rious reactive element dopants at 1200 ℃[J]. Corros Sci,2013,66:125.
13 Li M S,Zhang Y M. A review on effect of reactive elements on oxidation of metals [J]. Corros Sci Protection Technol, 2001,13(6):333(in Chinese).
李美栓,张亚明. 活性元素对合金高温氧化的作用机制[J]. 腐蚀科学与防护技术,2001,13(6):333
14 Hou P Y. The reactive element effect-Past, present, and future [J]. Mater Sci Forum,2011,696:39
15 Naumenko D, Pint B A, Quadakkers W J. Current thoughts on the active element effects in alumina-forming systems: In memory of John Stringer[J]. Oxidation Metals,2016,86(1):1.
16 Peng X, et al. High temperature corrosion of nano-crystalline metallic materials[J]. Acta Metall Sin,2014,50(2):202(in Chinese).
彭晓,等. 纳米晶金属材料的高温腐蚀行 [J]. 金属学报,2014,50(2):202.
17 Heuer A H, Hovis D B, Smialek J L, et al. Alumina scale formation: A new perspective[J]. J Am Ceram Soc,2011,94(s1):s146.
18 Wright I G, Wilcox B A, Jaffee R I. The high-temperature oxidation of Ni-20%Cr alloys containing various oxide dispersions [J]. Oxidation Metals,1975,9(3):275.
19 Hou P Y, Stringer J. The effect of reactive element additions on the selective oxidation, growth and adhesion of chromia scales[J]. Mater Sci Eng A,1995,202(1-2):1.
20 Whittle D P, Eldahshan M E, Stringer J. Oxidation behavior of cobalt-base alloys containing dispersed oxides formed by internal oxidation [J]. Corros Sci,1977,17(11):879.
21 Stringer J, Wright I G. The high-temperature oxidation of cobalt-21 wt.% chromium-3 vol.% Y2O3 alloys [J]. Oxidation Metals,1972,5(1):59.
22 Seltzer M S, Wilcox B A. Diffusion of chromium and aluminum in Ni-20Cr and TDNiCr (Ni-20Cr-2ThO2) [J]. Metall Trans,1972,3(9):2357.
23 Pint B A, Leibowitz J, Devan J H. The effect of an oxide dispersion on the critical Al content in Fe-Al alloys [J]. Oxidation Metals,1999,51(1):181.
24 Hou P Y, Stringer J. The influence of ion-implanted yttrium on the selective oxidation of chromium in Co-25 wt.% Cr[J]. Oxidation Metals,1988,29(1):45.
25 Hou P Y, Stringer J. The effect of surface-applied reactive metal oxi-des on the high temperature oxidation of alloys[J]. Mater Sci Eng,1987,87:295.
26 Hou P Y, Stringer J. Effect of surface-applied reactive element oxide on the oxidation of binary alloys containing Cr[J]. J Electrochem Soc,1987,134 (7):1836.
27 Whittle D P, Stringer J. Improvements in high-temperature oxidation resistance by additions of reactive elements or oxide dispersions[J]. Philosophical Transactions of the Royal Society of London Series A Mathematical Physical and Eng Sci,1980,295(1413):309.
28 Stringer J, Hed A Z, Wallwork G R, et al. The effect of a thoria dispersion on the high temperature oxidation of chromium [J]. Corros Sci,1972,12(8):625.
29 Hou P Y. Segregation phenomena at thermally grown Al2O3/alloy interfaces[J]. Annual Rev Mater Res,2008, 38:275.
30 Pint B A, MartinJ R, Hobbs L W. The oxidation mechanism of θ-Al2O3 scales[J]. Solid State Ionics,1995,78(1-2):99.
31 Doychak J, Rühle M. TEM studies of oxidized NiAl and Ni3Al cross sections[J]. Oxidation Metals,1989,31(5):431.
32 Doychak J, et al. Transient oxidation of single-crystal β-NiAl[J]. Metall Trans A- Phys Metall Mater Sci,1989,20(3):499.
33 Pint B A, Hobbs L W. Limitations on the use of ion implantation for the study of the reactive element effect in beta-NiAl[J]. J Electrochem Soc,1994,141(9):2443.
34 Bagwell R B, Messing G L, Howell P R. The formation of α-Al2O3 from θ-Al2O3: The relevance of a “critical size” and: Diffusional nucleation or “synchro-shear”[J]. J Mater Sci,2001,36:1833.
35 Tucker D S, Bleier A. Gamma-to-alpha transformation in spherical aluminum oxide powders[J]. J Am Ceram Soc,1985,68(7):C-163.
36 Burtin P, Brunelle J P, Pijolat M, et al. Influence of surface area and additives on the thermal stability of transition alumina catalyst supports. Ⅱ: Kinetic model and interpretation[J]. Appl Catal,1987,34(0):239
37 Burtin P, Brunelle J P, Pijolat M, et al. Influence of surface area and additives on the thermal stability of transition alumina catalyst supports. Ⅰ: Kinetic data[J]. Appl Catal,1987,34(0):225.
38 Pint B A, Treska M, Hobbs L W. The effect of various oxide dispersions on the phase composition and morphology of Al2O3 scales grown on beta-NiAl[J]. Oxidation Metals,1997,47(1-2):1.
39 Hou P Y. Impurity effects on alumina scale growth[J]. J Am Ceram Soc,2003,86(4):660.
40 Peng X, Guan Y, Dong Z, et al. A fundamental aspect of the growth process of alumina scale on a metal with dispersion CeO2 na-noparticles[J]. Corros Sci,2011,53(5):1954.
41 Cotell C M, Yurek G J, Hussey R J, et al. The influence of grain-boundary segregation of Y in Cr2O3 on the oxidation of Cr metal. Ⅱ. Effects of temperature and dopant concentration[J]. Oxidation Metals,1990,34(3):173.
42 Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect[J]. Oxidation Metals,1996,45(1-2):1.
43 Milas I, Hinnemann B, Carter E A. Structure of and ion segregation to an alumina grain boundary: Implications for growth and creep[J]. J Mater Res,2008,23(5):1494.
44 Pint B A, Alexander K B. Grain boundary segregation of cation do-pants in alpha-Al2O3 scales[J]. Fundamental Aspects of High Temperature Corrosion,1997,96(26):97.
45 Galmarini S, Aschauer U, et al. Atomistic simulation of Y-doped α-alumina interfaces[J]. J Am Ceram Soc,2008,91(11):3643.
46 Buban J P, Matsunaga K, Chen J. Grain boundary strengthening in alumina by rare earth impurities[J]. Science,2006,311:212.
47 Gemming T, Stefan N, Wolfgang K, et al. Structure and chemistry of symmetrical tilt grain boundaries in α-Al2O3: Ⅰ, Bicrystals with “clean” interface[J]. J Am Ceram Soc,2003,86(4):581.
48 Michels H T. The effect of dispersed reactive metal oxides on the oxi-dation resistance of nickel-20 Wt pct chromium alloys[J]. Metall Trans A,1976,3(7):379.
49 Oksiuta Z.High-temperature oxidation resistance of ultrafine-grained 14% Cr ODS ferritic steel[J]. J Mater Sci,2013,48(13):4801.
50 Pint B A, Tortorelli P F, Wright I G. The oxidation behavior of ODS iron aluminides[J]. Mater Corros,1996,47:663.
51 Pint B A, Garrattreed A J, Hobbs L W. The reactive element effect in commercial ODS FeCrAl alloys[J]. Mater High Temperatures,1995,13(1):3.
52 Pint B A. The oxidation behavior of oxide-dispersed beta-NiAl: Ⅰ. Short-term performance at 1200 ℃[J]. Oxidation Metals,1998,5-6(49):531.
53 Pint B A. Characterization of the high temperature oxidation of TBC-coated oxide-dispersed β-NiAl substrates[J]. Mater High Temperatures,1997,4(14):403.
54 Sun D, Liang C, Shang J, et al. Effect of Y2O3 contents on oxidation resistance at 1150 ℃ and mechanical properties at room tempe-rature of ODS Ni-20Cr-5Al alloy[J]. Appl Surf Sci,2016,385:587.
55 Tan X, Peng X, Wang F. The effect of grain refinement on the adhesion of an alumina scale on an aluminide coating [J]. Corros Sci,2014,85:280.
56 Hou P Y, Priimak K. Interfacial segregation, pore formation, and scale adhesion on NiAl alloys[J]. Oxidation Metals,2006,63(1):113.
57 Lim H, Park S, Kang S. The effect of particle size of alumina dispersions on the oxidation resistance of Ni-Cr alloys[J]. Oxidation Metals,1997,48(5):391.
58 Klower J. Factors affecting the oxidation behaviour of thin Fe-Cr-Al foils. Part Ⅱ: The effect of alloying elements: Overdoping[J]. Mater Corros,2000,51:373.
[1] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[2] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[3] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[4] 程春龙, 陈正, 陈长玖, 柳力晨, 乐启炽. 镁合金表面高温氧化膜CO2矿化处理研究[J]. 材料导报, 2024, 38(16): 23040159-6.
[5] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[6] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[7] 肖涵松, 玄伟东, 戴睿卿, 刘泳鸿, 李俊杰, 任忠鸣. 高温合金精密铸造用陶瓷型壳及其与合金界面反应的研究进展[J]. 材料导报, 2024, 38(10): 22100275-8.
[8] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[9] 高圣伦, 孙彬, 程磊, 刘振宇. 排气系统用不锈钢在汽车尾气环境下的高温氧化行为[J]. 材料导报, 2023, 37(24): 22080197-7.
[10] 王杰, 黄海亮, 周亚洲, 张华, 阮晶晶, 周鑫, 张尚洲, 江亮. 镍基粉末高温合金中γ′相溶解行为与动力学研究进展[J]. 材料导报, 2023, 37(21): 23020100-9.
[11] 霍苗, 赵惠. 籽晶法制备高温合金单晶叶片的研究进展[J]. 材料导报, 2023, 37(17): 21120070-6.
[12] 蒋瑞鑫, 牛宗伟, 史程程, 任智强, 韩国峰, 杨保伟, 王文宇, 杨善林, 陈贺连. 镍基高温合金载能束增材修复技术研究现状[J]. 材料导报, 2023, 37(15): 21120141-1.
[13] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[14] 骆传跃, 郑光明, 盖少磊, 姜秀丽, 杨先海, 程祥. 深冷处理对Al2O3-SiCw陶瓷刀具表面完整性及切削性能的影响[J]. 材料导报, 2023, 37(14): 21120031-8.
[15] 钟伟杰, 焦东玲, 邱万奇, 刘仲武. 熔体温度和雾化压力对氩气雾化镍基高温合金粉末的影响[J]. 材料导报, 2023, 37(10): 21070245-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed