Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 115-120    https://doi.org/10.11896/j.issn.1005-023X.2017.011.016
  新材料新技术 |
DNA电化学传感器对金属离子检测的研究进展*
李娜, 李曦, 褚梅, 程丹, 周键, 陈奇, 李玉刚, 董玉林
武汉理工大学化学化工与生命科学学院,武汉 430070
Applying DNA Electrochemical Sensors to the Detection of Metal Ions: A Review
LI Na, LI Xi, CHU Mei, CHENG Dan, ZHOU Jian, CHEN Qi, LI Yugang, DONG Yulin
School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070
下载:  全 文 ( PDF ) ( 1869KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于 DNAzyme、T-T和C-C之间错配以及G-四链体等能与金属离子特异性结合,基于DNA与金属离子相互作用来检测金属离子的DNA电化学传感器逐渐发展起来。介绍了几种DNA电化学传感器检测金属离子的新方法,并对DNA电化学传感器对金属离子检测的发展趋势和研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李娜
李曦
褚梅
程丹
周键
陈奇
李玉刚
董玉林
关键词:  金属离子  DNA电化学传感器  特异性结合    
Abstract: Basing on the special interaction between the metal ions and nucleic acids (DNAzyme, G-quadruplexed DNA and the bases of DNA), the DNA electrochemical sensors for the detection of metal ions are developed. In this paper, several DNA electrochemical sensors for the metal ions detection are introduced and the prospects for the future research are proposed.
Key words:  metal ions    DNA electrochemical sensors    special interaction
出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TB33  
  O657.1  
基金资助: 国家自然科学基金(51273155);中央高校基本科研业务费专项资金(2016IB005)
通讯作者:  李曦:通讯作者,女,1968年生,教授,主要从事电化学研究 E-mail:chemlixi@whut.edu.cn   
作者简介:  李娜:女,1990年生,硕士研究生, 从事电化学修饰电极研究 E-mail:lina965552058@whut.edu.cn
引用本文:    
李娜, 李曦, 褚梅, 程丹, 周键, 陈奇, 李玉刚, 董玉林. DNA电化学传感器对金属离子检测的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 115-120.
LI Na, LI Xi, CHU Mei, CHENG Dan, ZHOU Jian, CHEN Qi, LI Yugang, DONG Yulin. Applying DNA Electrochemical Sensors to the Detection of Metal Ions: A Review. Materials Reports, 2017, 31(11): 115-120.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.016  或          https://www.mater-rep.com/CN/Y2017/V31/I11/115
1 Benamor M, Aguerssif N. Simultaneous determination of calcium and magnesium by derivative spectrophotometry in pharmaceutical products[J]. Spectrochim Acta Part A: Mol Biomol Spectrosc,2008,69(2):676.
2 Arduini F, Calvo J Q, Palleschi G, et al. Bismuth-modified electrodes for lead detection[J]. TrAC Trends Anal Chem,2010,29(11):1295.
3 Quintana J C, Arduini F, Amine A, et al. Part two: Analytical optimisation of a procedure for lead detection in milk by means of bismuth-modified screen-printed electrodes[J]. Anal Chim Acta,2012,736:92.
4 Yu J, Yang S, Sun D, et al. Simultaneously determination of multi metal elements in water samples by liquid cathode glow discharge-atomic emission spectrometry[J]. Microchem J, 2016,128:325.
5 Capelo J L, Lavilla I, Bendicho C. Room temperature sonolysis-based advanced oxidation process for degradation of organomercu-rials: Application to determination of inorganic and total mercury in waters by flow injection-cold vapor atomic absorption spectrometry[J]. Anal Chem,2000,72(20):4979.
6 Habte G, Hwang I M, Kim J S, et al. Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA)[J]. Food Chem, 2016,212:512.
7 Li N, Zhang D, Zhang Q, et al. Combining localized surface plasmon resonance with anodic stripping voltammetry for heavy metal ion detection[J]. Sensors Actuators B: Chem,2016, 231:349.
8 Lin Z, Li X, Kraatz H B. Impedimetric immobilized DNA-based sensor for simultaneous detection of Pb2+, Ag+, and Hg2+[J]. Anal Chem,2011,83(17):6896.
9 Zhou Y, Tang L, Zeng G, et al. Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: A review[J]. Sensors Actuators B:Chem,2016,223:280.
10 Chen X, Tian R, Zhang Q, et al. Target-induced electronic switch for ultrasensitive detection of Pb2+ based on three dimensionally ordered macroporous Au-Pd bimetallic electrode[J]. Biosensors Bioe-lectron,2014,53:90.
11 Xiao Y, Rowe A A, Plaxco K W. Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly[J]. J Am Chem Soc,2007,129(2):262.
12 Zhuang J, Fu L, Xu M, et al. DNAzyme-based magneto-controlled electronic switch for picomolar detection of lead (Ⅱ) coupling with DNA-based hybridization chain reaction[J]. Biosensors Bioelectron,2013,45:52.
13 Lan T, Furuya K, Lu Y. A highly selective lead sensor based on a classic lead DNAzyme[J]. Chem Commun,2010,46(22):3896.
14 Gao A, Tang C X, He X W, et al. Electrochemiluminescent lead biosensor based on GR-5 lead-dependent DNAzyme for Ru(phen)32+ intercalation and lead recognition[J]. Analyst,2013, 138(1):263.
15 Yang Y, Yuan Z, Liu X P, et al. Electrochemical biosensor for Ni2+ detection based on a DNAzyme-CdSe nanocomposite[J]. Biosensors Bioelectron,2016,77:13.
16 Liu J, Lu Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity[J]. J Am Chem Soc,2007,129(32):9838.
17 Hu W, Min X, Li X, et al. DNAzyme catalytic beacons-based a label-free biosensor for copper using electrochemical impedance spectroscopy[J]. RSC Adv,2016,6(8):6679.
18 Ronald S B, Rao N G. Speciation of ternary complexes of calcium(Ⅱ) and magnesium(Ⅱ) with L-glutamine and succinic acid in ethylene glycol-water mixtures[J]. J Indian Chem Soc,2002,79(10):799.
19 Cheng Y, Huang Y, Lei J, et al. Design and biosensing of Mg2+-dependent DNAzyme-triggered ratiometric electrochemiluminescence[J]. Anal Chem,2014,86(10):5158.
20 Miyake Y, Togashi H, Tashiro M, et al. Mercury(Ⅱ)-mediated formation of thymine-Hg(Ⅱ)-thymine base pairs in DNA duplexes[J]. J Am Chem Soc,2006,128(7):2172.
21 Liu S, Kang M, Yan F, et al. Electrochemical DNA biosensor based on microspheres of cuprous oxide and nano-chitosan for Hg(Ⅱ) detection[J]. Electrochim Acta,2015,160:64.
22 Qiu Z, Tang D, Shu J, et al. Enzyme-triggered formation of enzyme-tyramine concatamers on nanogold-functionalized dendrimer for impedimetric detection of Hg(Ⅱ) with sensitivity enhancement[J]. Biosensors Bioelectron,2016,75:108.
23 Chen D M, Gao Z F, Jia J, et al. A sensitive and selective electrochemical biosensor for detection of mercury(Ⅱ) ions based on nicking endonuclease-assisted signal amplification[J]. Sensors Actuators B: Chem,2015,210:290.
24 Ono A, Cao S, Togashi H, et al. Specific interactions between silver(Ⅰ) ions and cytosine-cytosine pairs in DNA duplexes[J]. Chem Commun,2008,44(39):4825.
25 Liu G, Yuan Y, Wei S, et al. Impedimetric DNA-based biosensor for silver ions detection with hemin/G-quadruplex nanowire as enhancer[J]. Electroanalysis,2014,26(12):2732.
26 Yang Y, Kang M, Fang S, et al. A feasible C-rich DNA electrochemical biosensor based on Fe3O4@3D-GO for sensitive and selective detection of Ag+[J]. J Alloys Compd,2015,652:225.
27 Choi M S, Yoon M, Baeg J O, et al. Label-free dual assay of DNA sequences and potassium ions using an aptamer probe and a molecular light switch complex[J]. Chem Commun,2009, 45(47):7419.
28 Lin Z, Chen Y, Li X, et al. Pb2+ induced DNA conformational switch from hairpin to G-quadruplex: Electrochemical detection of Pb2+[J]. Analyst,2011,136(11):2367.
29 Bang G S, Cho S, Kim B G. A novel electrochemical detection me-thod for aptamer biosensors[J]. Biosensors Bioelectron,2005,21(6):863.
30 Sheikhzadeh E, Chamsaz M, Turner A P F, et al. Label-free impedimetric biosensor for salmonella typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer[J]. Biosensors Bioelectron,2016,80:194.
31 Gao F, Gao C, He S, et al. Label-free electrochemical lead(Ⅱ) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform[J]. Biosensors Bioelectron,2016, 81:15.
32 Zhang Z, Yin J, Wu Z, et al. Electrocatalytic assay of mercury(Ⅱ) ions using a bifunctional oligonucleotide signal probe[J]. Anal Chim Acta,2013,762:47.
[1] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[2] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[3] 毛晓璇, 冯柳, 吴立清, 辛伍红, 牛金叶. 多孔炭基复合材料用作碱金属离子电池负极的研究进展[J]. 材料导报, 2023, 37(S1): 23020009-12.
[4] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[5] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[6] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[7] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[8] 李子凡, 张志宾, 董志敏, 刘云海. 金属有机框架材料吸附重金属离子和放射性核素的研究进展[J]. 材料导报, 2023, 37(12): 21060035-10.
[9] 胡世琴, 杨金辉, 杨斌, 王劲松, 周书葵, 雷增江, 骆毅. 稻壳基材料应用于水污染治理领域的研究进展[J]. 材料导报, 2022, 36(4): 20050183-11.
[10] 肖维新, 袁静, 严开祺, 张敬杰. 生物聚合物气凝胶的制备与应用研究进展[J]. 材料导报, 2022, 36(20): 21030322-10.
[11] 师晓凤, 马应霞, 李鑫, 康小雅, 李晓华, 杨海军. 静电纺聚丙烯腈基纳米纤维对重金属离子吸附性能的研究进展[J]. 材料导报, 2022, 36(18): 20090131-9.
[12] 杨泽波, 辜振睿, 王海龙. 离子掺杂对钙质膨胀剂熟料性能的影响[J]. 材料导报, 2021, 35(z2): 259-261.
[13] 张诗洋, 朋小康, 廖松义, 闵永刚. 用于分离重金属离子的聚苯胺改性氧化石墨烯复合膜[J]. 材料导报, 2021, 35(18): 18030-18034.
[14] 谢艳新, 杨倩, 陈雅仙, 陈改荣, 朱宝库, 章鹏. 新型荷正电PVC微滤膜的制备及去除Cr(Ⅵ)性能[J]. 材料导报, 2021, 35(16): 16184-16189.
[15] 孔志云, 樊龙伟, 杜亚杰, 牛昌昌, 狄然, 张环, 魏俊富. 金属表面离子印迹材料的研究进展[J]. 材料导报, 2021, 35(15): 15143-15152.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed