Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21040102-10    https://doi.org/10.11896/cldb.21040102
  金属与金属基复合材料 |
铁素体不锈钢焊缝晶粒细化技术的研究现状
董志海1, 李逸文1, Aleksandr Babkin2, 常云龙1,*
1 沈阳工业大学材料科学与工程学院,沈阳 110870
2 俄罗斯利佩茨克国立技术大学,利佩茨克 398024
Research Status of Ferritic Stainless Steel Weld Grain Refinement Technology
DONG Zhihai1, LI Yiwen1, ALEKSANDR Babkin2, CHANG Yunlong1,*
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Institute of Mechanical Engineering, Lipetsk State Technical University, Lipetsk 398024, Russia
下载:  全 文 ( PDF ) ( 12644KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁素体不锈钢具有无Ni、导热性好、线膨胀系数小和成本低等优点,且在氯离子环境下具有比奥氏体不锈钢更好的耐应力腐蚀性能,被广泛应用于汽车、海工和石化等领域。但在焊接过程中,焊缝区和热影响区极易产生晶粒粗大的现象,导致接头塑韧性下降,尤其是厚板大熔深的自熔焊接时塑韧性呈断崖式下降。
本文通过收集、分类和分析国内外铁素体不锈钢焊缝晶粒细化的研究数据,总结了铁素体不锈钢焊缝晶粒细化的方法,如控制焊接参数、预热与提高冷却速度、调整熔池合金元素、脉冲焊接、电磁搅拌和超声波振动等方法。基于现有文献,采用非均质形核、促进晶粒游离以及枝晶熔断三种不同的机制来解释焊缝组织晶粒细化现象。最后对铁素体不锈钢焊缝晶粒细化方法进行了展望,采用外加能场的方法对熔池金属的流动具有一定影响,特别是研究多物理场下的焊缝组织晶粒长大行为,将为大熔深自熔焊焊接头性能的提高提供新的思路与方法。未来研发实际应用性强的晶粒细化装置和设备,发展大熔深自熔焊接下铁素体不锈钢焊缝的晶粒细化技术将成为主要趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董志海
李逸文
Aleksandr Babkin
常云龙
关键词:  铁素体不锈钢  晶粒细化方法  焊缝组织  多物理场    
Abstract: Ferritic stainless steel has the advantages of no Ni, good thermal conductivity, low linear expansion coefficient, low cost, etc., and has better stress corrosion resistance than austenitic stainless steel in a chloride ion environment. It is widely used in automobiles, marine applications and petrochemical. However, during the welding process, the weld zone and the heat-affected zone are prone to have coarse grains, which lead to a decrease in the toughness of the joint, especially the autogenous welding of thick plates.
Through collecting, classifying and analyzing the research data of ferritic stainless steel weld grain refinement at home and abroad, this paper summarizes the methods of ferritic stainless steel weld grain refinement, such as controlling welding parameters, preheating and increasing cooling rate, adjust the alloy elements of the molten pool, pulse welding, electromagnetic stirring and ultrasonic vibration and other methods. Based on the existing literature, three different mechanisms, including heterogeneous nucleation, promotion of grain separation and dendrite fusion, are used to explain the grain refinement phenomenon of weld microstructure. Finally, the method of grain refinement for ferritic stainless steel welds is prospected, and the method of applying an external energy field has a certain influence on the flow of the molten pool metal. In particular, the study of the grain growth behavior of the weld structure under multi-physical fields will provide new ideas for improving the performance of high penetration self-fusion welding joints. In the future, it will be the main trend to develop the grain refining equipment with strong practical application and develop the grain refining technology of ferrite stainless steel weld under the large penetration depth of autogenous welding technology.
Key words:  ferritic stainless steel    grain refining method    weld microstructure    multi-physics
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TG442  
基金资助: 沈阳市特种材料多能场复合加工协同创新中心专项(JG210027);沈阳市重点技术攻关“揭榜挂帅”专项(2022210101000827; 2022-0-43-048)
通讯作者:  * sychyl@126.com   
作者简介:  董志海,2014年7月毕业于沈阳大学,获得工学学士学位。现为沈阳工业大学材料科学与工程学院博士研究生,在常云龙教授的指导下进行研究。目前主要研究领域为磁控焊接技术及先进焊接技术。
常云龙,沈阳工业大学材料科学与工程学院教授、博士研究生导师,享受国务院政府特殊津贴专家,现任省先进焊接技术重点实验室主任、中国焊接学会常务理事。1987年在沈阳工业大学获得工学学士学位,1993年在沈阳工业大学获得工学硕士学位,1998年在华南理工大学获得工学博士学位。主要专注于焊接技术领域研究,主持国家自然科学基金、省重点、省基金、省/市重点实验室、市重大成果转化等项目近20项,承担企业合作项目10余项。获省科技进步二等奖。出版专著2部,参编4部,发表学术论文60余篇,授权发明专利6项,专利技术转让2项。
引用本文:    
董志海, 李逸文, Aleksandr Babkin, 常云龙. 铁素体不锈钢焊缝晶粒细化技术的研究现状[J]. 材料导报, 2022, 36(21): 21040102-10.
DONG Zhihai, LI Yiwen, ALEKSANDR Babkin, CHANG Yunlong. Research Status of Ferritic Stainless Steel Weld Grain Refinement Technology. Materials Reports, 2022, 36(21): 21040102-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040102  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21040102
1 Mondal M, Das H, Ahn E Y, et al. Metals and Meterials International, 2017, 23, 948.
2 Liu H L, Ma M Y, Liu L L, et al. Journal of Iron and Steel Research International, 2019, 26, 425.
3 Wu W Y, Hu S S, Shen J Q, et al. Journal of Materials Engineering and Performance, 2015, 24, 1505.
4 Okayasu M, Shigeoka T. Journal of Materials Engineering and Perfor-mance, 2019, 28, 6771.
5 Scalise T C, Oliveira M C L D, Sayeg I J, et al. Journal of Materials Engineering and Performance, 2014, 23, 2164.
6 Huang X Z, Wang D, Yang Y T. Journal of Iron and Steel Research International, 2015, 22, 1062.
7 Han K, Hong S, Lee C. Materials Science and Engineering A, 2012, 546, 97.
8 Sello M P, Stumpf W E. Materials Science and Engineering A, 2011, 528(3), 1840.
9 Lakshminarayanan A K, Balasubramanian V. Journal of Materials Engineering and Performance, 2012, 21(4), 530.
10 Lakshminarayanan A K, Balasubramanian V. Journal of Iron and Steel Research, 2012, 19(1), 75.
11 Silva C C, Farias J P, Hélio C M, et al. Materials Characterization, 2008, 59(5), 528.
12 Venkatesan M V, Murugan N, Sam S, et al. Transactions of the Indian Institute of Metals, 2013, 67(3), 375.
13 Akita M, Uematsu Y, Kakiuchi T, et al. Welding International, 2018, 32(6), 427.
14 He S R, Wang W X, Zhang T T, et al. Mechanical Engineering and Automation, 2014(5), 97 (in Chinese).
贺舒榕, 王文先, 张婷婷, 等. 机械工程与自动化, 2014(5), 97 .
15 Liu S H, Wang Y J, Quan W W. Electric Welding machine, 2009, 39(1), 30 (in Chinese).
刘顺洪, 王玉姣, 权雯雯. 电焊机, 2009, 39(1), 30.
16 Amuda M O H, Mridha S. Advanced Materials Research, 2011, 264, 390.
17 Liu L L. Super ferritic stainless steel laser welding research, Master’s Thesis, Tianjin University, China, 2014 (in Chinese).
刘腊腊. 超级铁素体不锈钢激光焊接研究. 硕士学位论文, 天津大学, 2014.
18 Köse C, Topal C. Materials Research Express, 2019, 6(6), 066517.
19 Lakshminarayanan A K, Balasubramanian V. Materials & Design, 2010, 31(10), 4592.
20 Lakshminarayanan A K, Balasubramanian V. Experimental Techniques, 2013, 37(5), 59.
21 Han J, Li H, Zhu Z, et al. Materials & Design, 2014, 63(11), 238.
22 Tang W S, Yang X Q, Li S L, et al. Transactions of the China Welding Institution, 2019, 40(6), 87 (in Chinese).
唐文珅, 杨新岐, 李胜利, 等. 焊接学报, 2019, 40(6), 87.
23 Lakshminarayanan A K, Balasubramanian V. Steel Research International, 2010, 81(11), 1023.
24 Srinivasan B P, Kumar S M P. Corrosion Engineering, Science and Technology, 2009, 44(2), 137.
25 Kim K H, Bang H S, Ro C S, et al. International Journal of Precision Engineering and Manufacturing-Green Technology, 2017, 4(4), 393.
26 Lakshminarayanan A K, Shanmugam K, Balasubramanian V. Journal of Iron and Steel Research(International), 2009, 16(1), 62.
27 Prakaash V G V, Vignesh A, Lakshminarayanan A K, et al. Applied Mechanics & Materials, 2015, 787, 401.
28 Yang W P, Yan Z F, Wang W X, et al. Transactions of Materials and Heat Treatment, 2012, 33(10), 96 (in Chinese).
杨文平, 闫志峰, 王文先, 等. 材料热处理学报, 2012, 33(10), 96.
29 Zheng Y, Wang Y, Li H, et al. The International Journal of Advanced Manufacturing Technology, 2016, 87, 3315.
30 Amuda M O H, Mridha S. Materials & Design, 2013, 47(5), 365.
31 Amuda M O H, Mridha S. Materials & Design, 2012, 35(3), 609.
32 Mallaiah G, Kumar A, Reddy P R, et al. Materials & Design, 2012, 36(4), 443.
33 Mallaiah G, Reddy P R, Kumar A. Procedia Materials Science, 2014, 6, 1740.
34 Gurram M, Adepu K, Pinninti R R, et al. Journal of Materials Research and Technology, 2013, 2(3), 238.
35 Park T J, Kong J P, Uhm S H, et al. Journal of Materials Processing Technology, 2011, 211, 415.
36 Kong J P, Park T J, Kim J K, et al. Materials & Design, 2011, 32(2), 917.
37 Amuda M O H, Mridha S. Advanced Materials Research, 2012, 445, 717.
38 Reddy G M, Mohandas T. Journal of Materials Science Letters, 2001, 20(8), 721.
21040102-939 Zhou J B, Chen J Q, Wang H Y, et al. Welding & Joining, 2009(3), 57 (in Chinese).
周宝金, 陈俊强, 王慧源, 等. 焊接, 2009(3), 57.
40 Mukherjee M, Dutta A, Kanjila P, et al. ISIJ International, 2015, 55(7), 1439.
41 Hu S S, Pang J, Shen J Q, et al. Transactions of Tianjin University, 2016, 22, 451.
42 Zhang H, Hu S S, Shen J Q, et al. International Journal of Advanced Manufacturing Technology, 2015, 80(9-12), 1975.
43 Vishnuvaradhan K, Vignesh P V, Prabhu R. International Journal of Machine and Construction Engineering, 2017, 4(2), 2394.
44 Liu X G, Guan Z Q, Zhang H X, et al. Hot Working Technology, 2019, 48(15), 1 (in Chinese).
刘晓光, 关子奇, 张洪旭, 等. 热加工工艺, 2019, 48(15), 1.
45 Wu H, Chang Y L, Lu L, et al. The International Journal of Advanced Manufacturing Technology, 2017, 91, 4263.
46 Villafuerte J C, Kerr H W. Weld Journal, 1990, 69(1), 1.
47 Reddy G, Meshram, Suresh. Indian Weld Journal, 2006, 39, 35.
48 Ding M, Wang Y C. Metals and Materials International, 2016, 22(1), 94.
49 Zhang C L, Wu M S. Welding & Joining, 2003(8), 8 (in Chinese).
张春雷, 吴敏生.焊接, 2003(8), 8.
50 Wu M S, He L B, Li L M, et al. Transactions of the China Welding Institution, 2005, 26(6), 40 (in Chinese).
吴敏生, 何龙标, 李路明, 等.焊接学报, 2005, 26(6), 40.
51 Wu M S, Zhang Y J, Li L M, et al. Journal of Tsinghua University(Science and Technology), 2006 (2), 161 (in Chinese).
吴敏生,张雁军,李路明,等.清华大学报(自然科学版), 2006(2), 61.
52 Watanabe T, Shiroki M, Yanagisawa A, et al. Journal of Materials Processing Technology, 2010, 210(12), 1646.
53 Leo P, Renna G, Casalino G, et al. Optics & Laser Technology, 2015, 73, 118.
54 Kondapalli S P. IOP Conference Series: Materials Science and Enginee-ring, 2017, 283(1), 012007.
55 Doomra A, Sandhu S S, Singh B. Metallurgical and Materials Enginee-ring, 2020, 26(3), 279.
56 Shah P H, Badheka V J. Journal of Materials: Design and Application, 2019, 233(6), 1191.
57 Patel V, Li W, Vairis A, et al. Critical Reviews in Solid State & Material Sciences, 2019, 8(7), 378.
58 Ahn B W, Choi D H, Kim D J, et al. Materials Science & Engineering A, 2012, 532, 476.
59 Gao X L, Xia T D, Wang X J, et al. Metallic Functional Materials, 2009, 16(6), 60 (in Chinese).
高晓龙, 夏天东, 王晓军, 等. 金属功能材料, 2009, 16(6), 60.
60 Zhou S L, Tao J, Guo D L. Welding & Joining, 2009(8), 11 (in Chinese).
周水亮, 陶军, 郭德伦. 焊接, 2009(8), 11.
61 Qi B J, Yang M X, Cong B Q, et al. International Journal of Advanced Manufacturing Technology, 2013, 66(9-12), 1545.
62 Kou S, Le Y. Weldig Journal, 1986, 65(12), 305.
63 Ram G, Murugesan R, Sundaresan S. Journal of Materials Engineering and Performance, 1999, 8(5), 513.
64 Arturo G R M, Hugo L M V, Rafael G H, et al. Materials Science Forum, 2013, 755, 61.
65 Long Q, Zhong Y B, Yu Z P, et al. Materials China, 2020, 39(6), 472 (in chinese).
龙琼, 钟云波,余正平, 等.中国材料进展, 2020, 39(6), 472.
66 Flynn H. Physical Acousties, 1964, 167(1), 30.
67 Tarasov S Y, Vorontsov A V, Fortuna S V, et al. Weld in the World, 2019, 63, 875.
68 Methong T, Poopat B. Key Engineering Materials, 2013, 545, 177.
69 Muhammed A, Hakeem O, Shahjahan M. Materials Science and Enginee-ring: Chinese and English version A, 2011, 1(3), 321.
70 Ramkumar K D, Chandrasekar A, Singh A K, et al. Journal of Manufacturing Processes, 2016, 20, 54.
71 Xie Y, Cai Y C, Zhang X, et al. The International Journal of Advanced Manufacturing Technology, 2018, 99, 347.
72 Ma L, Hu S S, Hu B, et al. Transactions of Tianjin University, 2014, 20, 429.
73 Doomra A, Sandhu S S, Singh B, et al. Metallurgical and Materials Engineering, 2020, 26(3), 279.
74 Zhang Z D, Li D Q, Yin X H, et al. Welding, 2002(3), 5(in Chinese).
张忠典, 李冬青, 尹孝辉,等.焊接, 2002(3), 5.
75 Lu L. Research on arc behavior of high frequency electromagnetic double pulse TIG welding. Ph.D. Thesis,Shenyang University of Technology, China, 2014 (in Chinese).
路林. 高频电磁双脉冲TIG焊电弧行为研究. 博士学位论文, 沈阳工业大学, 2014.
[1] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[2] 于鸿莉, 杨宏昊, 马张博, 张原硕, 杨雯, 李永堂. 铁素体合金表面复合尖晶石涂层的研究进展[J]. 材料导报, 2022, 36(17): 20090087-8.
[3] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[4] 吴建辉, 吴蒙华, 佐姗姗, 钱宁开. 无掩模定域性电沉积三维微结构的仿真研究[J]. 材料导报, 2020, 34(Z1): 427-432.
[5] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed