Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21040128-12    https://doi.org/10.11896/cldb.21040128
  无机非金属及其复合材料 |
二维忆阻材料及其阻变机理研究进展
曹青1, 熊礼苗1, 李鹏程2,*
1 合肥工业大学机械工程学院,合肥 230009
2 合肥工业大学汽车与交通工程学院,合肥 230009
Recent Research Progress of Two-Dimensional Memristive Materials and Its Resistance Switching Mechanism
CAO Qing1, XIONG Limiao1, LI Pengcheng2,*
1 School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
2 School of Automobile and Traffic Engineering, Hefei University of Technology, Hefei 230009, China
下载:  全 文 ( PDF ) ( 6414KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二维材料由于具有超薄、柔性的层状结构,有望突破传统阻变材料难以降低忆阻器尺寸的限制,成为存储器、柔性电子、神经形态计算等领域的研究热点。本文从器件结构、材料种类、开关机理、电极和功能层改性等方面综述和分析了近年来二维材料基忆阻器的研究进展。“三明治”结构是忆阻器最常用的结构,通过插入调节层可提高器件稳定性;平面结构可操控性较差,但其独特的易观察性为研究忆阻器的阻变机理提供了有力工具。石墨烯及其衍生物和二硫化钼忆阻器阻变性能较好且应用广泛;二硫化钨、碲化钼、六方氮化硼、黑磷、MXene、二维钙钛矿等也逐渐被应用于忆阻器,但性能仍需优化。器件开关机制主要包括导电细丝、电荷俘获与释放、原子空位等。选择功函数合适的电极,可有效调控界面势垒和载流子输运;通过将二维材料与聚合物复合或掺杂纳米粒子,可有效降低器件的离散性。下一步应从界面性质精确控制和耐弯曲耐极端温度等方面深入研究,为新型二维材料忆阻器的工业化应用奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹青
熊礼苗
李鹏程
关键词:  忆阻器  二维材料  阻变机制  功能层改性    
Abstract: Due to the ultra-thin and flexible layered structure, two-dimensional (2D) materials are expected to break through the limitation of traditional resistive materials in reducing memristor size,and thus become the research hotspot in the field of resistive memory, flexible electronic device, neuromorphic computing, etc. In this paper, the research progress of 2D-materials-based memristors is reviewed from the aspects of device structure, material type, switching mechanism, electrode, functional layer modification, etc. The sandwich-structure is the most commonly used structure for memristor, and its device switching performance can be improved by inserting regulating layer. Although planar-structure memristor shows poor switching properties, it has advantage of easy observation and is conducive to the investigation of switching mechanism. Graphene and its derivatives are the most widely studied 2D memristive materials, as well as molybdenum disulfide. The application of other 2D materials (such as WS2, MoTe2, h-BN, black phosphorus, MXene, perovskites, etc.) in memristors and their switching performances have also been summarized and analyzed. The device switching mechanisms mainly include conductive filaments, charge trapping/detrapping and atom vacancy. It is found that the interfacial barrier and charge transport can be effectively controlled by selecting the electrode with appropriate work function. Besides, the dispersion of the device switching performance can be reduced by combining the 2D material with polymer or nanoparticles. What still needs hard work is to engineer the interfacial properties, especially under bending conditions or extreme temperatures. New and preferable 2D memristive materials need to be further explored to realize industrial application.
Key words:  memristor    two-dimensional material    switching mechanism    functional layer modification
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TB32  
  TB34  
基金资助: 安徽省自然科学基金(2008085QE224);中国博士后科学基金(2019M662140);中央高校基本科研业务费专项资金(JZ2020HGTA0047)
通讯作者:  * lpc1988@hfut.edu.cn   
作者简介:  曹青,合肥工业大学机械工程学院副研究员、硕士研究生导师。本科和硕士均毕业于东北大学,2014年至2018年就读于美国阿拉巴马大学,获得材料学博士学位。2018年8月毕业后进入合肥工业大学工作。主要从事纳米薄膜材料与电子器件、反应热力学与动力学领域的研究工作。近年来,在纳米材料与器件领域发表论文10余篇,包括Applied Physics Letters、Journal of Applied Physics、JOM和Superlattices and Microstructures等。
李鹏程,合肥工业大学汽车与交通工程学院讲师、硕士研究生导师。硕博连读于中国科学技术大学,2016年获得工学博士学位。主要从事太阳能热发电、新能源材料领域的研究。近年来,在太阳能利用与新能源材料领域发表论文10余篇,包括Energy、Renewable Energy、Solar Energy和Applied Energy等。
引用本文:    
曹青, 熊礼苗, 李鹏程. 二维忆阻材料及其阻变机理研究进展[J]. 材料导报, 2022, 36(21): 21040128-12.
CAO Qing, XIONG Limiao, LI Pengcheng. Recent Research Progress of Two-Dimensional Memristive Materials and Its Resistance Switching Mechanism. Materials Reports, 2022, 36(21): 21040128-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040128  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21040128
1 Meijer G I. Science, 2008, 319, 1625.
2 Bez R, Camerlenghi E, Modelli A, et al. Proceedings of the IEEE, 2003, 91, 489.
3 Lacaita A L, Redaelli A. Microelectronic Engineering, 2013, 109, 351.
4 Apalkov D, Dieny B, Slaughter J M, et al. Proceedings of the IEEE, 2016, 104, 1796.
5 Fontana R E, Hetzler S R. Journal of Applied Physics, 2006, 99, 08N902.
6 Waser R, Aono M. Nature Materials, 2009, 6, 833.
7 Lewis D L, Lee H H S. In: Conference Record of the 2009 IEEE International Conference on 3D System Integration. San Francisco, 2009, pp. 115.
8 Thompson G L, Reukov V V, Nikiforov M P, et al. Nanotechnology, 2012, 23, 245705.
9 Chua L. IEEE Transactions on Circuit Theory, 1971, 18, 507.
10 Strukov D B, Snider G S, Stewart D R, et al. Nature, 2008, 453, 80.
11 Yang J J, Strukov D B, Stewart D R. Nature Nanotechnology, 2013, 8, 13.
12 Yi W, Tsang K K, Lam S K, et al. Nature Communications, 2018, 9, 4661.
13 Dong X Y, Xu C, Xie Y, et al. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012, 31, 994.
14 Zhao J W, Liu F J, Huang H Q, et al. Chinese Physics B, 2012, 21, 6.
15 Hu L X, Shi S Q, Cao H T, et al. Journal of Materials Science & Engineering, 2018, 36(4), 564 (in Chinese).
胡令祥, 施思齐, 曹鸿涛,等. 材料科学与工程学报, 2018, 36(4), 564.
16 Huang Y C, Chen P Y, Huang K F, et al. NPG Asia Materials, 2014, 6, 85.
17 Yu Z Q, Liu M L, Lang J X, et al. Acta Physica Sinica, 2018, 67(15), 157302 (in Chinese).
余志强, 刘敏丽, 郎建勋,等. 物理学报, 2018, 67(15), 157302.
18 Yang J J, Pickett M D, Li X, et al. Nature Nanotechnology, 2008, 3, 429.
19 Su S, Jian X C, Wang F, et al. Chinese Physics B, 2016, 25, 107302.
20 Chen Y S, Lee H Y, Chen P S, et al. IEEE Electron Device Letters, 2010, 31, 1473.
21 Kim S, Choi S, Lee J, et al. ACS Nano, 2014, 8, 10262.
22 Miao F, Strachan J P, Yang J J, et al. Advanced Materials, 2011, 23, 5633.
23 Xing Z W, Wu N J, Ignatiev A. Applied Physics Letters, 2007, 91, 052106.
24 Sakamoto T, Sunamura H, Kawaura H, et al. Applied Physics Letters, 2003, 82, 3032.
25 Xu H, Wang Q, Ma Y D, et al. Journal of Physics D: Applied Physics, 2013, 52, 07LT01.
26 Wang Z S, Zeng F, Yang J, et al. Applied Physics Letters, 2010, 97, 253301.
27 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306, 666.
28 Lee C, Wei X, Kysar J W, et al. Science, 2008, 321, 385.
29 Schedin F, Geim A K, Morozov S V, et al. Nature Materials, 2007, 6, 652.
30 Liu S, Lu N, Zhao X, et al. Advanced Materials, 2016, 28, 10623.
31 Yi M, Cao Y, Ling H, et al. Nanotechnology, 2014, 25, 18.
32 Son D, Chae S I, Kim M, et al. Advanced Materials, 2016, 28, 9326.
33 Zhang F, Krylyuk S, Zhang H, et al. In: Conference Record of the 2018 IEEE International Electron Devices Meeting. San Francisco, 2018, pp. 536.
34 Zhu K C, Liang X H, Yuan B, et al. ACS Applied Materials & Interfaces, 2019, 11, 37999.
35 Seo J Y, Choi J, Kim H S, et al. Nanoscale, 2017, 9, 15278.
36 Cao Y M, Tian X Y, Gu J W, et al. Angewandte Chemie International Edition, 2018, 57, 4543.
37 Jeong H Y, Kim J Y, Kim J W, et al. Nano Letters, 2010, 10, 4381.
38 Rehman M M, Siddiqui G U, Gul J Z, et al. Scientific Reports, 2016, 6, 36195.
39 Qian K, Tay R Y J, Lin M F, et al. ACS Nnao, 2017, 11, 1712.
40 Cheng X F, Hou X, Zhou J, et al. Small, 2018, 14, 1703667.
41 Wu H Q, Lin Y D, Gao B, et al. Micro/nano Electronics and Intelligent Manufacturing, 2019, 1(2), 36.
吴华强, 林钰登, 高滨,等. 微纳电子与智能制造, 2019, 1(2), 36.
42 Siemon A, Breuer T, Aslam N, et al. Advanced Functional Materials, 2015, 25, 6414.
43 Kang Y, Chu Z Y, Zhang D J, et al. Materials Reports A: Review Papers, 2013,27(4),26 (in Chinese).
康越, 楚增勇, 张东玖, 等. 材料导报A:综述篇, 2013, 27(4), 26.
44 Li J C, Shao S J. Acta Physica Sinica, 2017 66(1) 017101(in Chinese).
李建昌, 邵思佳. 物理学报, 2017, 66(1), 017101.
45 Qian K, Tay R Y J, Nguyen V C, et al. Advanced Functional Materials, 2016, 26, 2176.
46 Ji Y S, Lee S, Cho B, et al. ACS Nano, 2011, 5, 5995.
47 Wu C X, Li F S, Zhang Y G, et al. Applied Physics Letters, 2011, 99, 042108.
48 Valanarasu S, Kulandaisamy I, Kathalingam A, et al. Journal of Nanoscience and Nanotechnology, 2013, 13, 6755.
49 Pan C B, Ji Y F, Xiao N, et al. Advanced Functional Materials, 2017, 27, 1604811.
50 Qiu J T, Samanta S, Dutta M, et al. Langmuir, 2019, 35, 3897.
51 Son D I, Kim T W, Shim J H, et al. Nano Letters, 2010, 10, 2441.
52 Ekiz O Ö, Ürel M, Güner H, et al. ACS Nano, 2011, 5, 2475.
53 Xie Y. Study on the switching mechanism and performance of graphene oxide based resistive memory device. Master's Thesis, Northeast Normal University, China, 2017(in Chinese)
谢瑜. 基于氧化石墨烯的阻变存储器机理及其性能. 硕士学位论文, 东北师范大学, 2017.
54 Sangwan V K, Lee H S, Bergeron H, et al. Nature, 2018, 554, 500.
55 Yang Y, Du H Y, Xue Q, et al. Nano Energy, 2018, 57, 566.
56 Hou X, Pan R B, Yu Q, et al. Small, 2019, 15, 1803876.
57 Yuan F, Ye Y R, Lai C S, et al. International Journal of Nanoscience and Nanotechnology, 2014, 11, 106.
58 Hong S K, Kim J E, Kim S O, et al. IEEE Electron Device Letters, 2010, 31, 1005.
59 Yan X B, Zhang L, Yang Y Q, et al. Journal of Materials Chemistry C, 2017, 5, 11046.
60 Wang X J, Yin Y H, Song M Y, et al. ACS Applied Materials Interfaces, 2020, 12, 51729.
61 Ngo H T, Nguyen M T T, Do D P, et al. Journal of Science: Advanced Materials and Devices, 2020, 5, 199.
62 Venugopal G, Kim S J. Journal of Nanoscience and Nanotechnology, 2012, 12, 8522.
63 He C L, Zhu G F, Zhou X F, et al. Applied Physics Letters, 2009, 95, 232101.
64 Wang L H, Yang W, Sun Q Q, et al. Applied Physics Letters, 2012, 100, 063509.
65 Brzhezinskaya M, Kapitanova O O, Kononenko O V, et al. Journal of Alloys and Compounds, 2020, 849, 156699.
66 Tang L Z. Study on preparation and properties of graphene oxide based transparent resistive random access memory. Master's Thesis, Shijiazhuang Tiedao University, China, 2019(in Chinese).
唐灵芝. 氧化石墨烯基透明阻变存储器的制备及性能研究. 硕士学位论文,石家庄铁道大学, 2019.
67 Khurana G, Misra P, Kumar N, et al. Nanotechnology, 2015, 27, 15702.
68 HmarJ J L. Microelectronic Engineering, 2020, 233, 111436.
69 Choi J Y, Yu H C, Lee J, et al. Polymers, 2018, 10, 901.
70 Zhao E M, Liu S Q, Liu X D, et al. Nano, 2020, 15, 2050111.
71 Zhang B, Chen Y, Ren Y, et al. Chemistry A European Journal, 2013, 19, 6265.
72 Liu G, Zhuang X D, Chen Y, et al. Applied Physics Letters, 2009, 95, 253301.
73 Yu A D, Liu C L, Chen W C. Chemical Communications, 2012, 48, 383.
74 Cao Y M, Fu Y B, Li D Q, et al. Carbon, 2019, 141, 758.
75 Tao Y, Zhao P, Li Y, et al. Japanese Journal of Applied Physics, 2020, 59, 054002.
76 Yan X B, Zhang L, Chen H W, et al. Advanced Functional Materials, 2018, 28, 1803728.
77 Tran K M, Do D P, Vu H N, et al. Materials Science & Engineering B, 2020, 262, 114788.
78 Son J Y, Shin Y H, Kim H, et al. ACS Nano, 2010, 4, 2655.
79 Shin H W, Son J Y. Journal of Alloys and Compounds, 2019, 772, 900.
80 Zhao H B, Tu H L, Wei F, et al. IEEE Transaction on Electron Devices, 2014, 61, 1388.
81 He H K, Yang F F, Yang R. Physical Chemistry Chemical Physics, 2020, 22, 20658.
82 Wang M, Miu F. Physics, 2018, 47(8), 515(in Chinese).
王淼, 缪峰. 物理, 2018, 47(8), 515.
83 Kim C H, Ahn Y, Son J Y. Journal of American Ceramic Society, 2016, 99, 9.
84 Lin Y, Wang Z Q, Zhang X, et al. NPG Asia Materials, 2020, 12, 64.
85 Liu J Q, Zeng Z Y, Cao X H, et al. Small, 2012, 8, 3517.
86 Xu X Y, Yin Z Y, Xu C X, et al. Applied Physics Letters, 2014, 104, 033504.
87 Feng X W, Li Y D, Wang L, et al. Advanced Electronic Materials, 2019, 5, 1900740.
88 Hui F, Gutierrez E G, Long S B, et al. Advanced Electronic Materials, 2017, 3, 1600195.
89 Tan C L, Zhang H. Chemical Society Reviews, 2015, 44, 2713.
90 Cheng P F, Sun K, Hu Y H. Nano Letters, 2016, 16, 572.
91 Eda G, Yamaguchi H, Voiry D, et al. Nano Letters, 2011, 11, 5111.
92 Zhang P, Gao C X, Xu B H, et al. Small, 2016, 12, 2077.
93 Bessonov A A, Kirikova M N, Petukhov D I, et al. Nature Materials, 2015, 14, 199.
94 Sharma S, Kumar A, Dutta S, et al. Applied Physics Letters, 2020, 117, 192101.
95 Dev D, Shawkat M S, Jung Y, et al. IEEE Electron Device Letters, 2020, 41, 1440.
96 Wang K Y, Li L T, Zhao R J, et al. Advanced Electronic Materials, 2020, 6, 1901342.
97 Thomas A, Resmi A N, Ganguly A, et al. Scientific Reports, 2020, 10, 12450.
98 Bhattacharjee S, Sarkar P K, Prajapat M, et al. Journal of Physics D: Applied Physics, 2017, 50, 265103.
99 Fan F, Zhang B, Cao Y M, et al. Nanoscale, 2017, 9, 2449.
100 GaneshanS K, Ganeshan V, Sahatiya P. New Journal of Chemistry, 2020, 44, 11941.
101 Duerloo K A N, Li Y, Reed E J. Nature Communications, 2014, 5, 4214.
102 Sun L J, Ding M M, Li J, et al. Applied Surface Science, 2019, 496, 143687.
103 Rehman M M, Siddiqui G U, Doh Y H, et al. Semiconductor Science and Technology, 2017, 32, 095001.
104 Yan X B, Zhao Q L, Chen A P, et al. Small, 2019, 15, 1901423.
105 Han P D, Sun B, Li J, et al. Journal of Colloid and Interface Science, 2017, 505, 148.
106 Li Y D, Sivan M, Niu J X, et al. In: Conference Record of the 2019 IEEE International Conference on Flexible and Printable Sensors and Systems. Glasgow, 2019, pp. 46.
107 Song L, Ci L J, Lu H, et al. Nano Letters, 2010, 10, 3209.
108 Wu Q T, Shi T, Zhao X L, et al. Acta Physica Sinica, 2017, 66(21), 134(in Chinese).
吴全谭, 时拓, 赵晓龙,等. 物理学报, 2017, 66(21), 134.
109 Maldonado D, Roldán J B, Roldán A M, et al. In: Conference Record of the 2020 IEEE International Reliability Physics Symposium. Dallas, 2020, pp. 196.
110 Puglisi F M, Larcher L, Pan C, et al. In: Conference Record of the 2016 IEEE International Electron Devices Meeting. San Francisco, 2016, pp. 874.
111 Jeong H, Kim J, Kim D Y, et al. ACS Applied Materials & Interfaces, 2020, 12, 46288.
112 Villena M A, Hui F, Liang X H, et al. Microelectronics Reliability, 2019, 102, 113410.
113 Dastgeer G, Abbas H, Kim D Y, et al. Physics Status Solidi Rapid Research Letter, 2020, 15, 2000473.
114 Tian H, Zhao L F, Wang X F, et al. ACS Nano, 2017, 11, 12247.
115 Liu H, Neal A T, Zhu Z, et al. ACS Nano, 2014, 8, 4033.
116 Gu M C, Zhang B, Liu B, et al. Journal of Materials Chemistry C, 2020, 8, 1231.
117 Chen Y H, Xu W, Wang Y Q, et al. Acta Physica Sinica, 2019, 68(9), 098501(in Chinese).
陈义豪, 徐威, 王钰琪,等. 物理学报, 2019, 68(9), 098501.
118 Bao Y S, Ren Z, Li H X, et al. Journal of Physics D: Applied Physics, 2017, 52, 075103
119 Gu M C, Zhao Z Z, Liu J X, et al. European Polymer Journal, 2021, 142, 110153.
120 Yang Y N, Wang R R, Sun J. Journal of Inorganic Materials, 2020, 35(1), 8(in Chinese).
杨以娜, 王冉冉, 孙静. 无机材料学报, 2020, 35(1), 8.
121 Zhang Y, Long S B, Liu M. Physics, 2017, 46(10), 645(in Chinese).
张颖, 龙世兵, 刘明. 物理, 2017, 46(10), 645.
122 Waser B R, Dittmann R, Staikov C, et al. Advanced Materials, 2009, 21, 2632.
123 Wang M, Cai S H, Pan C, et al. Nature Electronics, 2018, 1, 130.
124 Zobelli A, Gloter A, Ewels C P, et al. Physical Review B, 2007, 75, 245402.
125 Yan X B, Wang K Y, Zhao J H, et al. Small, 2019, 15, 1900107.
126 Kim H J, Yoon K J, Park T H, et al. Advanced Electronic Materials, 2017, 3, 1600404.
127 Walia S, Balendhran S, Wang Y C, et al. Applied Physics Letters, 2013, 103, 232105.
128 Zhang L Y, Fang L, Peng X Y. Acta Physica Sinica, 2015, 64(18), 187101(in Chinese).
张理勇, 方粮, 彭向阳. 物理学报, 2015, 64(18), 187101.
129 Pan F, Gao S, Chen C, et al. Materials Science and Engineering R, 2014, 83, 1.
130 Senthilkumar V, Kathalingam A, Valanarasu S, et al. Physics Letters A, 2013, 377, 2432.
131 Anoop G, Panwar V, Kim T Y, et al. Advanced Electronic Materials, 2017, 3, 1600418.
[1] 杜辉, 陈巧, 刘婷, 贺毅, 金应荣. 非线性晶体和光电材料硒化镓的研究进展[J]. 材料导报, 2022, 36(5): 20080191-10.
[2] 张祎辰, 王肖剑, 张明锦, 冯晴亮. 二硫化铂的可控合成及应用研究进展[J]. 材料导报, 2022, 36(15): 21050167-12.
[3] 陈晓平, 楼玉民, 赵宁宁, 黄一君, 胡海龙, 岳建岭. 基于异质结构忆阻器的研究进展[J]. 材料导报, 2022, 36(10): 20070058-10.
[4] 李慧娟, 刘诗斌, 冯晴亮. 基于二维层状半导体材料的电化学传感器性能研究及应用进展[J]. 材料导报, 2022, 36(1): 20080298-10.
[5] 刘晓刚, 孙红, 刘林聪. 二维材料在摩擦机理和润滑应用方面的研究进展[J]. 材料导报, 2021, 35(z2): 33-37.
[6] 陈立杭, 张绫芷, 沈彩, 刘兆平. AFM峰值力轻敲模式下石墨烯与迈科烯结构稳定性的比较[J]. 材料导报, 2021, 35(22): 22006-22010.
[7] 李彬, 李娜, 黄一凡, 王强, 张晓东. 单粒子效应的激光模拟方法研究进展[J]. 材料导报, 2021, 35(21): 21195-21201.
[8] 刘后宝, 傅仁利, 苏新清, 陈旭东, 吴彬勇. MXene材料的结构、性能及在电磁屏蔽领域的应用[J]. 材料导报, 2021, 35(13): 13067-13074.
[9] 杨晨, 高凤雨, 唐晓龙, 易红宏, 苗磊磊, 于庆君, 赵顺征. 二维材料的合成方法及在催化领域应用的研究进展[J]. 材料导报, 2020, 34(13): 13005-13016.
[10] 曹明星, 马立文, 王志宏. 碲属线性巨磁阻材料研究进展[J]. 材料导报, 2020, 34(13): 13131-13138.
[11] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[12] 郑伟, 杨莉, 张培根, 陈坚, 田无边, 张亚梅, 孙正明. 二维材料MXene的储能性能与应用[J]. 材料导报, 2018, 32(15): 2513-2537.
[13] 郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 二维纳米材料MXene的研究进展*[J]. CLDB, 2017, 31(9): 1-14.
[14] 唐捷, 华青松, 元金石, 张健敏, 赵玉玲. 超级电容器中的二维材料[J]. CLDB, 2017, 31(9): 26-35.
[15] 王慧德, 范涛健, 谢中建, 张晗. 二维黑磷的制备及光电器件研究进展*[J]. CLDB, 2017, 31(9): 45-49.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed