Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22006-22010    https://doi.org/10.11896/cldb.20070329
  无机非金属及其复合材料 |
AFM峰值力轻敲模式下石墨烯与迈科烯结构稳定性的比较
陈立杭1,2,†, 张绫芷3,†, 沈彩2, 刘兆平2
1 宁波大学材料科学与化学工程学院,宁波 315211
2 中国科学院宁波材料技术与工程研究所,宁波 315201
3 宁波大学食品与药学学院,宁波 315211
Comparison of Structure Stability of Graphene and MXene by Peak Force Tapping Mode of Atomic Force Microscope
CHEN Lihang1,2,†, CHEONG Lingzhi3,†, SHEN Cai2, LIU Zhaoping2
1 School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211,China
2 Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201,China
3 College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211,China
下载:  全 文 ( PDF ) ( 4357KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过原位原子力显微镜Peak force tapping模式对石墨烯和迈科烯(MXene)的结构稳定性进行了比较。当原位观察二维材料还原氧化石墨烯(rGO)时,rGO形貌基本不随时间发生改变;而当原位观察二维材料迈科烯V2C时,V2C表面发生纳米刻蚀现象,其形貌表面积随扫描时间逐渐减小。利用数据处理软件分析面积变化,计算出纳米刻蚀的速率,发现增大峰值力,平均纳米刻蚀速率随之增大,且在大气环境中的刻蚀速率大于在手套箱(Ar气氛围,H2O和O2含量小于1×10-6)中的速率,说明大气中的水分对材料的稳定性有影响,会加快纳米刻蚀的速率。本研究表明原子力显微镜Peak force tapping模式可以用来快速表征二维材料的稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈立杭
张绫芷
沈彩
刘兆平
关键词:  二维材料  原子力显微镜  Peak force tapping模式  纳米刻蚀  稳定性    
Abstract: In this paper, the structural stability of graphene and MXene was compared by peak force tapping mode of AFM. When in-situ scanning of two-dimensional material of reduced graphene oxide (rGO), the morphology of rGO did not change with time, which indicated that peak force tapping mode had no damage effect on the stable structure surface; when in-situ scanning of two-dimensional material V2C, nano-etching occurred on the surface of V2C, and the morphology surface area decreased with scanning time. The data processing software was used to analyze the area change and calculate the nano etching rate. It was found that the average nano-etching rate increased with the increase of the peak force, and the etching rate in the atmospheric environment was higher than that in the glove box (Ar atmosphere, the content of H2O and O2 was less than 1×10-6), which indicated that the moisture in the atmosphere had an impact on the stability of the material and would accelerate the nano-etching. This study shows that the peak force tapping mode of AFM can be used to qualitatively characterize the stability of two-dimensional materials.
Key words:  two-dimensional material    in-situ atomic force microscope    peak force tapping    nanolithography    stability
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TB303  
基金资助: 浙江省自然科学基金-台州联合基金 (LTY20B030001)
通讯作者:  shencai@nimte.ac.cn; liuzhaoping@nimte.ac.cn   
作者简介:  陈立杭,2019年6月毕业于中国计量大学,获得理学学士学位。现在中科院宁波材料所与宁波大学联合培养,攻读硕士学位,在沈彩副研究员的指导下进行研究。目前主要研究领域为材料表/界面结构显微分析。
张绫芷,宁波大学食品与药学学院教授。已在国内外期刊发表SCI论文60多篇,申请发明专利9项(授权1 项),撰写专著章节4 部,获得省市奖项5项。
沈彩,中国科学院宁波材料技术与工程研究所,“春蕾”副研究员,硕士研究生导师。宁波市“3315计划”创新人才; 中科院青年创新促进会会员。2008年在英国圣安得鲁斯大学化学系获得博士学位。主要致力于扫描探针显微镜技术的应用和新能源材料的开发。在JACS, ACS Nano,Energy Storage Materials, Nano Energy, Small Methods, Ultramicroscopy和 Journal of Microscopy等SCI期刊上发表论文90多篇,引用3000多次,H-index 33;申请发明专利10多项(授权7项)。主持国家自然科学基金面上项目、国家自然科学基金联合项目、国家自然科学基金青年项目、浙江省自然科学基金、宁波市自然科学基金等项目。作为子课题/子任务负责人参与国家重点研发计划“新能源汽车”专项、宁波市“科技创新2025”重大专项“高比能锂金属二次电池技术”等项目。担任Journal of Microscopy、Materials期刊编委、中国有色金属学报青年编委以及60多个学术期刊审稿人。
刘兆平,中国科学院宁波材料技术与工程研究所,高级研究员,博士研究生导师。主要研究方向为石墨烯和动力锂离子电池及其材料技术。已发表论文近170篇。
引用本文:    
陈立杭, 张绫芷, 沈彩, 刘兆平. AFM峰值力轻敲模式下石墨烯与迈科烯结构稳定性的比较[J]. 材料导报, 2021, 35(22): 22006-22010.
CHEN Lihang, CHEONG Lingzhi, SHEN Cai, LIU Zhaoping. Comparison of Structure Stability of Graphene and MXene by Peak Force Tapping Mode of Atomic Force Microscope. Materials Reports, 2021, 35(22): 22006-22010.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070329  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22006
1 Jiang Q, Lei Y, Liang H, et al. Energy Storage Materials,2020,27,78.
2 Xia Z, Huang Q, Guo S. FlatChem, 2019, 17, 100129.
3 Tiwari S K, Sahoo S, Wang N, et al. Journal of Science: Advanced Materials and Devices, 2020, 5(1), 10.
4 Jiang R R,Zhou X F,Liu Z P. Hot Working Technology, 2020,49(10),62(in Chinese).
蒋蓉蓉,周旭峰,刘兆平.热加工工艺,2020,49(10),62.
5 Liu F, Zhou J, Wang S, et al. Journal of the Electrochemical Society, 2017, 164(4), A709.
6 Anasori B, Lukatskaya M R, Gogotsi Y. Nature Reviews Materials, 2017, 2(2),16098.
7 Zhou J, Zha X, Zhou X, et al. ACS Nano, 2017, 11(4), 3841.
8 Li Y, Li M, Lu J, et al. ACS Nano, 2019, 13(8), 9198.
9 Huang Q, Shen C, Weng X C, et al. Journal of Inorganic Materials, 2020, 35(1), 131.
10 Naguib M, Mochalin V N, Barsoum M W, et al. Advanced Materials, 2014, 26(7), 992.
11 Urbankowski P, Anasori B, Makaryan T, et al. Nanoscale, 2016, 8(22), 11385.
12 Halim J, Kota S, Lukatskaya M R, et al. Advanced Functional Mate-rials, 2016, 26(18), 3118.
13 Hwang S K, Kang S M, Rethinasabapathy M, et al. Chemical Enginee-ring Journal, 2020, 397, 125428.
14 Li Z,Wang L,Sun D, et al. Materials Science and Engineering: B,2015, 191, 33.
15 Naguib M, Mashtalir O, Carle J, et al. ACS Nano, 2012, 6(2), 1322.
16 Shen C, Hu G, Cheong L Z, et al. Small Methods, 2018, 2(2), 1700298.
17 Wang S W, Hu H F,Wang D Y, et al. Journal of Inorganic Materials, 2017, 32(6),596.
18 Shen C, Wang S, Jin Y, et al. ACS Applied Materials & Interfaces, 2015, 7(45), 25441.
19 Shi X, Qing W, Marhaba T, et al. Electrochimica Acta,2020,332,135472.
20 Wang X M, Xiao Y B, Xu J B. Journal of Chinese Electron Microscopy Society, 2012, 31(1), 74(in Chinese).
王肖沐, 肖宇彬, 许建斌.电子显微学报, 2012, 31(1), 74.
21 Yang Y, Lin J. Microsc Microanal, 2016, 22(2), 432.
22 Yang Y, Zhao W. Journal of Manufacturing Processes, 2019, 46, 129.
23 Cheong L Z, Zhao W, Song S, et al. Acta Biomaterialia, 2019, 99, 33.
24 Zhao W, Song W, Cheong L Z, et al. Ultramicroscopy, 2019, 204, 34.
25 Liu T T, Ding W N, Tian K, et al. Journal of Chinese Electron Microscopy Society, 2020, 39(1), 13(in Chinese).
刘婷婷, 丁炜楠, 田凯,等.电子显微学报, 2020, 39(1), 13.
26 Stankovich S, Dikin D A, Piner R D, et al. Carbon,2007,45(7),1558.
27 Liu J K, An L Y. Applied Chemical Industry, 2019, 48(12), 2864(in Chinese).
刘军凯, 安莲英.应用化工, 2019, 48(12), 2864.
28 Zhao H W, Xu B, Wu J. Journal of Chinese Electron Microscopy Society, 2019, 38(1), 65(in Chinese).
赵宏伟, 许博, 吴鉴.电子显微学报, 2019, 38(1), 65.
29 Li Y M, Guo Y L, Jiao Z Y. Current Applied Physics,2020,20(2),310.
30 Wu X H, Wang Z Y, Yu M Z, et al. Advanced Materials, 2017, 29(24), 1607017.
31 Karlsson L H, Birch J, Halim J, et al. Nano Letters,2015,15(8),4955.
32 Sang X, Xie Y, Lin M W, et al. ACS Nano, 2016, 10(10), 9193.
[1] 欧珊, 牟自豪, 林涛, 李瑶, 冯威, 刘文龙. 两步法制备碳化钛薄膜及其电容性能[J]. 材料导报, 2021, 35(z2): 18-21.
[2] 刘晓刚, 孙红, 刘林聪. 二维材料在摩擦机理和润滑应用方面的研究进展[J]. 材料导报, 2021, 35(z2): 33-37.
[3] 罗祥, 王玲, 王振地. 混凝土中气泡的产生与发展:机理和影响因素[J]. 材料导报, 2021, 35(z2): 213-217.
[4] 李书进, 刘源涛, 厉见芬, 盛炎民. 盾构废弃泥沙再生制备高性能注浆材料的试验研究[J]. 材料导报, 2021, 35(z2): 275-278.
[5] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[6] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[7] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[8] 贾东, 蔡淑红, 李献强, 郝文静, 刘波涛, 谭凯锋, 王峰. 纳米流体导热介质研究进展[J]. 材料导报, 2021, 35(z2): 540-549.
[9] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[10] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[11] 罗遥凌, 高育欣, 闫欣宜, 谢昱昊, 毕耀. 热养护UHPC后期水稳定性[J]. 材料导报, 2021, 35(Z1): 242-246.
[12] 莫东鸣. 高Prandtl数双层流体的热毛细对流数值模拟[J]. 材料导报, 2021, 35(Z1): 302-305.
[13] 郭翠霞, 吴张永, 王航, 朱启晨, 邹应辉. 乳液基碳化硅纳米工作液的沉降稳定性、流变性与介电性[J]. 材料导报, 2021, 35(8): 8028-8033.
[14] 张鹤, 张会丰, 郑婷婷, 赵富春, 廖双泉. 月桂酸铵对浓缩天然胶乳贮存稳定性及硫化胶性能的影响[J]. 材料导报, 2021, 35(8): 8184-8190.
[15] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed