Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 20090087-8    https://doi.org/10.11896/cldb.20090087
  金属与金属基复合材料 |
铁素体合金表面复合尖晶石涂层的研究进展
于鸿莉, 杨宏昊, 马张博, 张原硕, 杨雯*, 李永堂
太原科技大学材料科学与工程学院,金属材料成形理论与技术山西省重点实验室,太原 030024
Composite Spinel Protective Coating for Ferritic Stainless Steel: a Review
YU Hongli, YANG Honghao, MA Zhangbo, ZHANG Yuanshuo, YANG Wen*, LI Yongtang
Shanxi Key Laboratory of Metal Forming Theory and Technology,School of Material Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 3632KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 固体氧化物燃料电池(SOFC)因具有清洁、高效等优点而得到了世界各国的广泛研究。连接体是研究SOFC的关键组件之一,近年来研究最多的SOFC连接体材料是铁素体不锈钢,其在实际的生产应用中具有导热性好、热膨胀系数匹配性好等优点。但“阴极铬中毒”、高温导电性和抗氧化性差等问题又限制了这一材料的应用,常见的解决办法是在表面制备保护涂层,如活性元素氧化物涂层、稀土钙钛矿涂层、复合尖晶石涂层等,其中复合尖晶石涂层被普遍认为是最具应用前景的SOFC连接体涂层。关于复合尖晶石涂层的性能及优化研究主要集中在成分、制备工艺和连接体三个方面。在成分方面,对比研究电导率、热膨胀系数、面比电阻和氧化速率常数等参数发现,Cu-Mn尖晶石涂层的电导率最高,而Co-Mn尖晶石的综合性能最好。还可以通过在尖晶石晶体中掺杂铜、铁来提高涂层的电导率,在涂层中掺杂活性元素及其氧化物来降低面比电阻、提高涂层的高温抗氧化性。在制备工艺方面,电泳沉积、磁控溅射等方法所制备的涂层均匀致密,能很好地黏附在基体表面,涂层性能优越。在连接体方面,凹面少、表面平整的连接体所制备的涂层性能更加稳定。
本文详尽地归纳了近年来关于SOFC连接体的复合尖晶石保护涂层的研究,从成分、制备工艺和连接体三个方面讨论了涂层的优化方法,并指明了研究趋势,可以为推动金属连接体的工业化应用提供指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于鸿莉
杨宏昊
马张博
张原硕
杨雯
李永堂
关键词:  固体氧化物燃料电池(SOFC)  铁素体不锈钢  复合尖晶石涂层  性能优化    
Abstract: Solid oxide fuel cells (SOFC) have been widely studied in recent years because they can efficiently use fossil fuels and also collect gas and waste heat. The interconnect is one of the key components of the SOFC, which directly affects the long-term stability of the stack. At present, the ferritic stainless steel is one of the most important interconnect materials, which has advantages of high thermal conductivity, suitable coefficient of thermal expansion, and so on. However, its applications are still limited by several problems such as cathode Cr poisoning, poor electrical conductivity and insufficient oxidation resistance at high temperature. The normal solution is to prepare protective coatings on the surface of the ferritic stainless steel, such as reactive element oxides (REOs) coatings, rare earth perovskite coatings, composite spinel coatings, etc. Composite spinel coatings are generally considered to be the most promising SOFC interconnect coatings. The research and performance optimization of composite spinel coatings mainly focus on the composition, preparation technology and interconnect. In terms of composition, it is found that Cu-Mn spinel coating has the highest electrical conductivity, while Co-Mn spinel has the best comprehensive performance considering the electrical conductivity, coefficient of thermal expansion (CTE), area specific resistance (ASR), oxidation rate constant (Kp) and other parameters. At the same time, the electrical conductivity of coatings can be improved by the doping of copper or iron, while the electrical resistance can be reduced and the high-temperature oxidation resistance can be improved by the doping of REOs. In terms of preparation technology, the coatings prepared by electrophoretic deposition, magnetron sputtering and other methods, have superior performance which are uniform and dense and adhere well to the surface of the substrate. In terms of the metallic interconnect, the performance of coatings is more stable, when the interconnect has less concave and flatter surface.
In this paper, the recent works on composite spinel protective coatings for SOFC metallic interconnects are summarized in detail. The optimization methods of coatings are discussed in terms of composition, preparation technology and metallic interconnect, and the direction of the development is predicted. This work can provide guidance for promoting the industrial application of metallic interconnects.
Key words:  solid oxide fuel cell (SOFC)    ferritic stainless steel    composite spinel protective coatings    performance optimization
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TG174.44  
基金资助: 国家自然科学基金(51871158);山西省应用基础研究计划(201801D121084);山西省高校大学生创新创业训练计划项目(2019359)
通讯作者:  *yangwen@tyust.edu.cn   
作者简介:  于鸿莉,2018年6月毕业于太原科技大学材料物理学专业,获得工学学士学位。现为太原科技大学材料科学与工程学院硕士研究生,在杨雯教授的指导下进行研究。目前主要研究领域为铁素体合金的表面优化。
杨雯,太原科技大学材料科学与工程学院教授、博士研究生导师。2004年7月本科毕业于曲阜师范大学物理工程学院,2009年7月在中国科学院固体物理研究所凝聚态物理专业取得博士学位。主要从事金属表面改性和计算材料学的研究,发表学术论文50余篇,其中SCI、EI论文30余篇。
引用本文:    
于鸿莉, 杨宏昊, 马张博, 张原硕, 杨雯, 李永堂. 铁素体合金表面复合尖晶石涂层的研究进展[J]. 材料导报, 2022, 36(17): 20090087-8.
YU Hongli, YANG Honghao, MA Zhangbo, ZHANG Yuanshuo, YANG Wen, LI Yongtang. Composite Spinel Protective Coating for Ferritic Stainless Steel: a Review. Materials Reports, 2022, 36(17): 20090087-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090087  或          http://www.mater-rep.com/CN/Y2022/V36/I17/20090087
1 Zhang W W. Electrophoresis deposition of (Mn,Co)3O4 coating and study of characteristics. Master's Thesis, Kunming University of Science and Technology, China, 2013 (in Chinese).
张卫伟. 电泳沉积(Mn,Co)3O4涂层制备及其特性的研究. 硕士学位论文, 昆明理工大学, 2013.
2 Zhang H. Elements diffusion and optimization design of protective coatings for SOFC metallic interconnects. Master's Thesis, Harbin Institute of Technology, China, 2012 (in Chinese).
张辉. 固体氧化物燃料电池连接板保护膜扩散研究与优化设计. 硕士学位论文, 哈尔滨工业大学, 2012.
3 Zhang L Z. Study of electrodeposited Ni-Co alloy coating on ferritic stainless steel. Master's Thesis, Northeastern University, China, 2012 (in Chinese).
张琳珠. 铁素体不锈钢表面电镀Ni-Co合金涂层的研究. 硕士学位论文, 东北大学, 2012.
4 Hua B. Oxidation, conductivity and surface modification of metallic interconnect materials for solid oxide fuel cells. Ph.D. Thesis, Huazhong University of Science and Technology, China, 2010 (in Chinese).
华斌. 固体氧化物燃料电池金属连接体材料的氧化和导电性以及表面改性. 博士学位论文, 华中科技大学, 2010.
5 Wu Y S. LCO-based proton conducting electrolyte and related materials of solid oxide fuel cells. Ph.D. Thesis, University of Science and Technology of China, China, 2019 (in Chinese).
武煜森. 固体氧化物燃料电池LCO基质子传导电解质及相关材料研究. 博士学位论文, 中国科学技术大学, 2019.
6 Gao Z, Mogni V L, Miller C E, et al. Energy & Environmental Science, 2016, 9, 1602.
7 Mahato N, Banerjee A, Gupta A, et al. Progress in Materials Science, 2015, 72, 141.
8 Gao B. The research of preparation processes of Y-doped CuMn2O4 coa-ting for SOFC alloy interconnect. Master's Thesis, Chang'an University, China, 2019 (in Chinese).
高彬. SOFC合金连接体Y掺杂CuMn2O4涂层制备工艺研究. 硕士学位论文, 长安大学, 2019.
9 Wang A Q. Study on preparation and characterization of Mn/Co protective coatings for SOFC interconnect. Master's Thesis, Harbin Institute of Technology, China, 2011 (in Chinese).
王安祺. SOFC金属连接体Mn/Co保护膜层的制备及其性能研究. 硕士学位论文, 哈尔滨工业大学, 2011.
10 Shaigan N, Qu W, Ivey G D, et al. Journal of Power Sources, 2010, 195, 1529.
11 Zhang H. Study on compatibility of new ceramic interconnects with SOFC electrode materials. Master's Thesis, Qingdao University, China, 2019 (in Chinese).
张昊. 新型陶瓷连接体材料与SOFC电极材料相容性研究. 硕士学位论文, 青岛大学, 2019.
12 Mah C W J, Muchtar A, Somalu R M, et al. International Journal of Hydrogen Energy, 2017, 42, 9219.
13 Zhang H, Zhan Z L, Liu X B. Journal of Power Sources, 2011, 196, 8041.
14 Li Y L, Song J L, Zhu J H, et al. Electropating & Finishing, 2019, 38(13), 647 (in Chinese).
李晔珑, 宋建丽, 朱家红, 等. 电镀与涂饰, 2019, 38(13), 647.
15 Li Y L, Song J L, Zhu J H, et al. Materials Protection, 2019, 52(7), 75 (in Chinese).
李晔珑, 宋建丽, 朱家红, 等. 材料保护, 2019, 52(7), 75.
16 Hua B, Kong Y H, Lu F S, et al. Chinese Science Bulletin,2010, 55(33), 3831.
17 Jia C, Wang Y H, Molin S, et al. Journal of Alloys and Compounds, 2019, 787, 1327.
18 Smeacetto F, Miranda D A, Polo C S, et al. Journal of Power Sources, 2015, 280, 379.
19 Molin S, Sabato G A, Javed H, et al. Materials Letters, 2018, 218, 329.
20 Brylewski T, Kruk A, Bobruk M, et al. Journal of Power Sources, 2016, 333, 145.
21 Xiao J H, Zhang W Y, Xiong C Y, et al. International Journal of Hydrogen Energy, 2016, 41, 9611.
22 Xu Y J, Wen Z Y, Wang S R, et al. Solid State Ionics, 2011, 192, 561.
23 Bednarz M, Molin S, Bobruk M, et al. Materials Chemistry and Physics, 2019, 225, 227.
24 Zanchi E, Molin S, Sababto G A, et al. Journal of Power Sources, 2020, 455, 227910.
25 Mosavi A, Ebrahimifar H. International Journal of Hydrogen Energy, 2020, 45(4), 3145.
26 Lewis J M. Synthesis and evaluation of electrolytically-deposited coatings to protect ferritic stainless steels for solid oxide fuel cell interconnect application. Master's Thesis, Tennessee Technological University, USA, 2011.
27 Gavrilov V N, Ivanov V V, Kamenetskikh S A, et al. Surface & Coatings Technology, 2011, 206, 1252.
28 Balland A, Gannon P, Deibert M, et al. Surface & Coatings Technology, 2009, 203, 3291.
29 Tseng H P, Yung T Y, Liu C K, et al. International Journal of Hydrogen Energy, 2020, 45, 12555.
30 Ranjbar-Nouri Z, Soltanieh M, Rastegari S. Surface & Coatings Technology, 2018, 334, 365.
31 Geng S J, Zhao Q Q, Li Y H, et al. International Journal of Hydrogen Energy, 2017, 42, 10298.
32 Sun Z H, Gopalan S, Pal B U, et al. Surface & Coatings Technology, 2017, 323, 49.
33 Sun Z H, Wang R F, Nikiforov Y A, et al. Journal of Power Sources, 2018, 378, 125.
34 Wang R F, Sun Z H, Pal B U, et al. Journal of Power Sources, 2018, 376, 100.
35 Guo P Y, Lai Y B, Shao Y, et al. Metals, 2017, 7(12), 522.
36 Zhang L L. Preparation and high temperature properties of Cu-Mn spinel coatings. Master's Thesis, Xi'an University of Science and Technology, China, 2017 (in Chinese).
张路路. Cu-Mn尖晶石涂层的制备与高温性能的研究. 硕士学位论文, 西安科技大学, 2017.
37 Joshi S, Silva C, Wang P, et al. Journal of the Electrochemical Society, 2014, 161(3), 233.
38 Joshi S, Petric A. International Journal of Hydrogen Energy, 2017, 42(8), 5584.
39 Geng S J, Li Y D, Ma Z H, et al. Journal of Power Sources, 2010, 195, 3256.
40 Zhao Q Q, Geng S J, Chen G, et al. Journal of Alloys and Compounds, 2018, 769, 120.
41 You P F, Zhang X, Zhang H L, et al. International Journal of Hydrogen Energy, 2018, 43, 7492.
42 You P F, Zhang X, Zhang H L, et al. Oxidation of Metals, 2020, 93, 465.
43 Zhang X, You P F, Zhang H L, et al. International Journal of Hydrogen Energy, 2018, 43, 3273.
44 Zhao Z Y. The preparation and performance study of NiMn2O4 coating on the rare earth modified Fe-Cr ferritic alloy interconnection for SOFC. Master's Thesis, Chang'an University, China, 2015 (in Chinese).
赵之彧. SOFC稀土改性Fe-Cr合金连接体NiMn2O4涂层的制备及性能研究. 硕士学位论文, 长安大学, 2015.
45 Hua B, Zhang W Y, Wu J, et al. Journal of Power Sources, 2010, 195, 7375.
46 Zhu H M, Geng S J, Chen G, et al. Journal of the Electrochemical Society, 2020, 167(4), 041506.
47 Jalilvand G, Faghihi-Sani M. International Journal of Hydrogen Energy, 2013, 38, 12007
48 Hosseini N S, Karimzadeh F, Enayati H M, et al. Solid State Ionics, 2016, 289, 95
49 Pan Y, Geng S J, Chen G, et al. Corrosion Science, 2020, 170, 108680.
50 Masi A, Bellusci M, McPhail J S, et al. Journal of the European Ceramic Society, 2017, 37(2), 661.
51 Talic B, Wulff C A, Molin S, et al. Surface & Coatings Technology, 2019, 380, 125093.
52 Miguel-Pérez V, Martínez-Amesti A, Nó L M, et al. Corrosion Science, 2012, 60, 38.
53 Öztürk B, Topcu A, Öztürk S, et al. International Journal of Hydrogen, 2018, 43, 10822.
[1] 王松林, 徐向棋, 陈子潘, 孟广耀. 掺碱土金属的双稀土铬酸盐(Pr0.5Nd0.5)0.7M0.3CrO3-δ(M=Sr, Ca)用于SOFC连接材料[J]. 材料导报, 2018, 32(16): 2728-2732.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed