Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22050049-7    https://doi.org/10.11896/cldb.22050049
  金属与金属基复合材料 |
环境和法向载荷对(TiVCrAlMo)N高熵合金薄膜摩擦学性能的影响
王整1,2, 蔡召兵1,2,*, 陈飞寰2, 董颖辉3, 张坡1, 陈娟2,3, 古乐1,2, 曾良才1,2,3,*
1 武汉科技大学冶金装备及其控制教育部重点实验室,武汉 430081
2 武汉科技大学机械传动与制造工程湖北省重点实验室,武汉 430081
3 武汉科技大学精密制造研究院,武汉 430081
Effects of Environment and Normal Load on Tribological Property of (TiVCrAlMo)N High-entropy Alloy Films
WANG Zheng1,2, CAI Zhaobing1,2,*, CHEN Feihuan2, DONG Yinghui3, ZHANG Po1, CHEN Juan2,3, GU Le1,2, ZENG Liangcai1,2,3,*
1 Key Laboratory of Metallurgical Equipment and Control Technology, Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
2 Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
3 Precision Manufacturing Institute, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 10519KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了(TiVCrAlMo)N高熵合金薄膜在干摩擦、16烷、去离子水及三种粘度润滑油(0W-20、10W-30及5W-40)下的摩擦学行为,并探究了不同载荷(1 N、2 N和3 N)对其摩擦学性能的影响。结果表明:1 N和2 N下,高熵合金薄膜在16烷和润滑油中的摩擦系数远低于在干摩擦和去离子水中的摩擦系数,但在3 N下,高熵合金薄膜在去离子水中的摩擦系数出现大幅下降。在油润滑下,高熵合金薄膜在低粘度润滑油(0W-20)中的磨损率随载荷的增加而增大,而在中粘度润滑油(10W-30)中的磨损率随载荷的增加而减小,但在高粘度润滑油(5W-40)中的磨损率与载荷之间无明显的线性关系。高熵合金薄膜在干摩擦中的磨损机制是磨粒磨损和分层磨损,但随载荷的增加还伴有氧化磨损;在16烷中的磨损机制是疲劳磨损和氧化磨损,但在1 N下仅为轻微磨粒磨损;在去离子水中的磨损机制为磨粒磨损和氧化磨损。高熵合金薄膜在低粘度润滑油(0W-20)中1 N下的磨损机制是轻微磨粒磨损,但随载荷的增加转为疲劳磨损;相反的是,在中粘度润滑油(10W-30)中的磨损机制是疲劳磨损,但随载荷的增加转为轻微磨粒磨损;此外,高熵合金薄膜在高粘度润滑油(5W-40)中的磨损机制是磨粒磨损,但在2 N下伴有氧化磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王整
蔡召兵
陈飞寰
董颖辉
张坡
陈娟
古乐
曾良才
关键词:  高熵合金薄膜  环境  法向载荷  摩擦学性能  磨损机制    
Abstract: In this work, the tribological behaviors of (TiVCrAlMo)N high-entropy alloy (HEA) films under dry, 16C, deionized water and three viscosity oils (0W-20, 10W-30 and 5W-40) were studied, and the effects of different loads (1 N, 2 N and 3 N) on the tribological properties were investigated. The results revealed that under 1N and 2N, the friction coefficient of HEA films in 16C and lubricating oil was much lower than that in dry and deionized water, however, the friction coefficient of HEA film decreases greatly in deionized water under 3 N. The wear rate of HEA film in low viscosity oil (0W-20) increased with the increase of load, while the wear rate in medium viscosity oil (10W-30) decreased with the increase of load, moreover, there was no obvious linear relationship between the wear rate and load in high viscosity oil (5W-40). The wear mechanisms of HEA film in dry were abrasive and delamination wears, but oxidation wear occurred with the increase of load. The wear mechanisms in 16C were fatigue and oxidation wears, but it was only slight abrasive wear under 1 N. The wear mechanisms in deionized water were abrasive and oxidation wears. In low viscosity oil (0W-20) under 1 N, the wear mechanism of HEA film was slight abrasive wear, but turns to fatigue wear with the increase of load. On the contrary, the wear mechanism in medium viscosity oil (10W-30) was fatigue wear, but turns to slight abrasive wear with the increase of load. In addition, the wear mechanism of HEA film in high viscosity oil (5W-40) was abrasive wear, but there was additional oxidation wear under 2 N.
Key words:  high-entropy alloy film    environment    normal load    tribological property    wear mechanism
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TB31  
基金资助: 国家自然科学基金(51905524)
通讯作者:  *曾良才,武汉科技大学机械自动化学院教授、博士研究生导师。1986年毕业于华中工学院,获学士学位,1994年毕业于武汉钢铁学院,获硕士学位,2005年毕业于武汉理工大学,获博士学位。获国家技术发明二等奖1项以及中国机械工业科学技术奖二等奖1项。授权发明专利10余项,发表论文70余篇。主要研究领域为液压传动与机械摩擦学。caizhaobing@wust.edu.cn
蔡召兵,武汉科技大学机械自动化学院副教授、硕士研究生导师。2018年3月本硕博毕业于哈尔滨工程大学,2018年4月—2020年6月在中国科学院宁波材料技术与工程研究所从事博士后研究工作。目前以第一作者身份发表SCI论文17篇、EI论文1篇,以通讯作者发表SCI论文4篇,参与授权国家发明专利10余项。主要研究领域为表面工程与摩擦学。zengliangcai@wust.edu.cn   
作者简介:  王整,2016年9月于临沂大学获得工学学士学位。现为武汉科技大学大学机械自动化学院硕士研究生,在曾良才教授和蔡召兵副教授的指导下进行研究。目前主要研究领域为高熵合金薄膜耐磨性能研究。
引用本文:    
王整, 蔡召兵, 陈飞寰, 董颖辉, 张坡, 陈娟, 古乐, 曾良才. 环境和法向载荷对(TiVCrAlMo)N高熵合金薄膜摩擦学性能的影响[J]. 材料导报, 2023, 37(18): 22050049-7.
WANG Zheng, CAI Zhaobing, CHEN Feihuan, DONG Yinghui, ZHANG Po, CHEN Juan, GU Le, ZENG Liangcai. Effects of Environment and Normal Load on Tribological Property of (TiVCrAlMo)N High-entropy Alloy Films. Materials Reports, 2023, 37(18): 22050049-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050049  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22050049
1 Tang Q G, Wang J, Li T, et al. Lubrication Engineering, 2007, 32(1), 102 (in Chinese).
唐群国, 王径, 李塔, 等. 润滑与密封, 2007, 32(1), 102.
2 Xiao C A, Tang H S, Ren Y , et al. Mechine Tool & Hydraulics , 2020, 48(1), 9 (in Chinese).
肖朝昂, 汤何胜, 任燕, 等. 机床与液压, 2020, 48(1), 9.
3 Chao Q. Research on some key technologies of high-speed rotation for axial piston pumps used in EHAs. Ph.D. Thesis, Zhejiang University, China, 2019 (in Chinese).
潮群. EHA轴向柱塞泵高速化若干关键技术研究. 博士学位论文,浙江大学, 2019.
4 Dou Z H. Tribological performance and surface texture between port plates in axial pumps. Master's Thesis, Taiyuan University of Technoology, China, 2018 (in Chinese).
窦振华. 轴向柱塞泵配流副摩擦磨损及表面织构研究. 硕士学位论文, 太原理工大学 , 2018.
5 Kou B F, Li Z S, Zhang Z, et al. Chinese Hydraulics & Pneumatics, 2021, 45(10), 81 (in Chinese).
寇保福, 李振顺, 张涨, 等. 液压与气动, 2021, 45(10), 81.
6 Wang Y, Wan W, Mao J, et al. Coatings, 2020, 10(12), 1.
7 Wang J, Wu Z Y, Zhang Z H, et al. Chinese Hydraulics & Pneumatics 2011(7) , 90 (in Chinese).
王娟, 吴张永, 张自华, 等. 液压与气动, 2011(7) , 90.
8 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring A-Structural Materials Properties Microstructure and Processing, 2004,375-377, 213.
9 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014(61), 1.
10 Wang H J, Zhang W, Peng Y B. et al. Coatings, 2020, 10(3), 300.
11 Li W, Liu P & Peter K Liaw. Materials Research Letters, 2018, 6(4), 199.
12 Xiao J K, Li T T, Wu Y Q, et al. Journal of Thermal Spray Technology, 2021, 30(4), 926.
13 Hang B Y, Du W, Zhu S, et al. Surface Technology, 2021, 50(4), 159 (in Chinese).
韩冰源, 杜伟, 朱胜, 等. 表面技术 , 2021 , 50(4) , 159.
14 Sha C H, Zhou Z F, Xie Z H, et al. Applied Surface Science, 2020, 507, 145101.
15 Chen R, Cai Z B, Pu J B, et al. Journal of Alloys and Compounds, 2020, 827, 153836.
16 Wang Y X, Yang Y J, Yang H J, et al. Journal of Alloys and Compounds, 2017, 725, 365.
17 N.Haghdadi, T.Guo, A.Ghaderi, et al. Wear, 2019, 428, 293.
18 Lan L W, Wang X J, Guo R P, et al. Journal of Materials Science & Technology , 2020, 42, 85.
19 Yang J, Ma J Q, Bi Q L, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2008, 490(1), 90.
20 Sharma G, Limaye P K,Sundararaman M, et al. Materials Letters, 2007, 61(16), 3345.
21 La P Q, Ma J Q, Yuantian T.Zhu, et al. Acta Materialia, 2005, 53(19), 5167.
22 Yang J, La P Q, Liu W M, et al. Wear, 2004, 257(1), 104.
23 Bi Q, Liu W, Yang J, et al. Tribology Letters, 2005, 20(2), 149.
24 Hu T C, Hu L T. Lubrication Science, 2012, 24(2), 84.
25 Li X, Deng X R, Hiroyuki Kousaka, et al. Wear, 2017, 392, 84.
[1] 黄雪刚, 刘洋, 李博文, 谭聪, 谭春玲, 宋兰, 仇浩. 三种热点工程颗粒材料的性质与环境行为和细胞毒性的关系[J]. 材料导报, 2023, 37(6): 21050141-8.
[2] 陈阳, 胡翔, 吴泽媚, 史才军. 海洋环境下FRP增强混凝土构件结构劣化和性能退化的研究综述[J]. 材料导报, 2023, 37(18): 21120052-11.
[3] 刘军, 李振林, 张伟卓, 靳贺松, 邢锋. 工业固体废弃物材料制作冷粘结人造轻骨料的研究进展[J]. 材料导报, 2023, 37(18): 21090269-18.
[4] 褚召阳, 郭乃胜, 房辰泽, 谭忆秋, 尤占平. 氯盐环境下沥青与沥青混合料性能及劣化机理研究进展[J]. 材料导报, 2023, 37(15): 21110001-9.
[5] 刘泊天, 于翔天, 张静静, 姚子洋, 高鸿, 邢焰. 航天器舱外应用材料服役寿命末期耐辐射损伤机制研究[J]. 材料导报, 2022, 36(Z1): 20070234-4.
[6] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[7] 李博文, 刘洋, 李宗霖, 齐佳敏, 谭聪, 何莹, 仇浩. 生物炭对土壤酶活性影响的机理研究进展[J]. 材料导报, 2022, 36(7): 20060202-6.
[8] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[9] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[10] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[11] 翟俊俊, 赵思, 肖秦箭, 李粤, 王唯, 徐贵贵, 李草, 匡映. 生物质气凝胶的疏水改性及应用研究进展[J]. 材料导报, 2022, 36(23): 20120203-15.
[12] 沈自才, 高鸿, 樊艳艳, 闫继娜, 于云, 刘学超, 王胭脂, 代巍. 航天材料飞行试验进展及发展方向[J]. 材料导报, 2022, 36(22): 22050022-8.
[13] 季启政, 王一凡, 胡小锋, 李兴冀, 杨剑群, 刘尚合. 航天用氮化镓材料的研究进展[J]. 材料导报, 2022, 36(22): 22050023-6.
[14] 霍丽霞, 苟世宁, 郭芳君, 贺颖, 冯凯, 周晖, 张凯锋. 溶胶-凝胶法制备聚酰胺-酰亚胺粘结MoS2/SiOx固体润滑涂层及其真空摩擦学性能研究[J]. 材料导报, 2022, 36(22): 22050078-5.
[15] 孙承月, 郭鑫鑫, 吴忧, 曹争利, 王豪, 琚丹丹, 王岩, 吴宜勇. 聚酰亚胺气凝胶材料的电子/紫外辐照效应及机理分析[J]. 材料导报, 2022, 36(22): 22040378-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed