Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22050022-8    https://doi.org/10.11896/cldb.22050022
  宇航材料 |
航天材料飞行试验进展及发展方向
沈自才1,*, 高鸿2, 樊艳艳2, 闫继娜3, 于云3, 刘学超3, 王胭脂4, 代巍5
1 北京卫星环境工程研究所,北京 100094
2 中国空间技术研究院,北京 100094
3 中国科学院上海硅酸盐研究所,上海201899
4 中国科学院上海光学精密机械研究所,上海 201800
5 中国科学院空间应用工程与技术中心,北京 100094
Progress and Development Direction of Flight Test of Aerospace Materials
SHEN Zicai1,*, GAO Hong2, FAN Yanyan2, YAN Jina3, YU Yun3, LIU Xuechao3, WANG Yanzhi4, DAI Wei5
1 Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
2 China Academy of Space Technology, Beijing 100094, China
3 Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
4 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
5 Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China
下载:  全 文 ( PDF ) ( 3950KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 航天材料飞行试验与地面模拟试验和数值模拟试验互为补充,且飞行试验是获得航天材料在轨性能数据的最直接的方法。本文首先从被动暴露和主动暴露两个维度对航天材料飞行试验技术进行了介绍,并对国内外的航天材料飞行试验现状进行了梳理和分析,进而对航天材料飞行试验的发展方向如飞行试验材料的多样化和批量化、飞行试验和空间环境的监测同步开展、航天材料的宏观性能和微观性能的同时监测等进行了探讨,最后从系统规划、兼顾被动暴露和主动暴露、兼顾空间环境和效应监测、飞行试验装置的多功能和集成化等角度给出了开展航天材料飞行试验的建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈自才
高鸿
樊艳艳
闫继娜
于云
刘学超
王胭脂
代巍
关键词:  航天材料  飞行试验  空间环境  效应    
Abstract: The flight test of aerospace materials is complementary to the ground simulation test and numerical simulation test, and the flight test is the most direct method to obtain the on-orbit performance data of aerospace materials. The flight test technology of aerospace materials is introduced from passive exposure and active exposure firstly in this paper, the current situation of aerospace material flight test at home and abroad is analyzed, and the development trend of aerospace material flight test such as the variety and batch of flight test materials, the flight test and space environment multaneous monitoring, and the macro and micro properties simultaneous monitoring of aerospace materials are discussed. At last, some suggestions on aerospace material flight test such as system planning, passive and active exposure, space environment and effect monitoring, multi-function and integration of flight test device were proposed.
Key words:  aerospace material    flight test    space environment    effect
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  V45  
基金资助: 国家自然科学基金(11975052);国家重点研发计划(2018YFE0118000)
通讯作者:  * zicaishen@163.com   
作者简介:  沈自才,博士,北京卫星环境工程研究所研究员。主要从事航天器空间环境工程和航天材料工程学研究。出版学术专著5部,授权发明专利20余项,编写GB/GJB/QJ标准10余项,发表学术论文100余篇。
引用本文:    
沈自才, 高鸿, 樊艳艳, 闫继娜, 于云, 刘学超, 王胭脂, 代巍. 航天材料飞行试验进展及发展方向[J]. 材料导报, 2022, 36(22): 22050022-8.
SHEN Zicai, GAO Hong, FAN Yanyan, YAN Jina, YU Yun, LIU Xuechao, WANG Yanzhi, DAI Wei. Progress and Development Direction of Flight Test of Aerospace Materials. Materials Reports, 2022, 36(22): 22050022-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050022  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22050022
1 Shen Z C. Space radiation environment engineering, Aerospace Press, China, 2012,pp.340(in Chinese).
沈自才.空间辐射环境工程, 宇航出版社, 2012,pp.340.
2 Shen Z C, Ouyang X P, Gao H, et al. Aerospace material engineering, National Defense Industry Press.2016, pp.228(in Chinese).
沈自才, 欧阳晓平,高鸿,等.航天材料工程学,国防工业出版社.2016, pp.228.
3 Shen Z C, Yan D K. Spacecraft Environment Engineering, 2014, 31(3),229(in Chinese).
沈自才, 闫德葵.航天器环境工程, 2014, 31(3),229.
4 Silverman E M. Space environmental effects on spacecraft: LEO materials selection guide, part 1. NASA Contractor Report 4661. Progress Report, Apr. 1993 - Mar. 1995. TRW, Inc., Redondo Beach, CA. Space and Electronics Group, USA, 1995, pp.1.
5 Silverman E M. Space environmental effects on spacecraft: LEO materials selection guide, part 2. NASA Contractor Report 4661. Progress Report, Apr. 1993-Mar. 1995 TRW, Inc., Redondo Beach, CA. Space and Electronics Group, USA, 1995, pp.1.
6 Levine A S. LDEF - 69 Months in Space First Post-retrieval Symposium. NASA CP-3134, NASA, USA, 1991, pp.1
7 Levine A S. LDEF-69 Month in Space:Second Post-retrieval Symposium. NASA-CP-3194, NASA, USA, 1992, pp.1.
8 Levine A S. LDEF-69 Month in Space:Third Post-retrieval Symposium. NASA-CP-3275, NASA, USA, 1995, pp.1
9 Zwiener J M, Vaughn J A, Kamenetzky R R. The Passive Optical Sample Assembly(POSA)-I Experiment-First Flight Results and Conclusions. AIAA 1999-16044, AIAA, USA,1999, pp.1.
10 De K K, Bruce A B. NASA Glenn Research Center's Materials International Space Station Experiment(MISSE 1-7). NASA/TM-2008-215482, NASA, USA, 2008, pp.1.
11 De K K, Banks B A, Dever J A, et al. Proceedings of the International Sym. on “SM/MPAC&SEED Experiment,”JAXA-SP-08-015E,2009,pp.91.
12 De K K, Jaworske D A, Kinard W H,et al. Technology Innovation, 2011, 15(4), 50.
13 DeKKand BanksBA, Atomic Oxygen Erosion Data from the MISSE 2-8 Missions, NASA TM-2019-219982, May 2019.
14 DeK K, Banks B A, MISSE-Flight Facility Polymers and Composites Experiment 1-4(PCE 1-4), NASA TM-20205008863(Feb. 2021). https://ntrs.nasa.gov/citations/20205008863
15 HummerL. System report for the optical properties monitor(OPM) experiment. NASA/CR-2001-210882. 2001,pp.1.
16 Wang L, Man G L.Spacecraft Engineering, 2012,21(2), 108(in Chinese).
王磊,满广龙.航天器工程,2012,21(2),108.
17 Liu G, Wang J, Wang H F.Aerospace Materials & Technology. 2017, 47(3), 64(in Chinese).
刘刚,王简,王惠芬.宇航材料工艺, 2017, 47(3), 64.
18 William H K,Glenna D M, Robert L D. Interactions of the space environments with the Long Duration Exposure Facility(LDEF). AIAA 92-0792, AIAA, USA,1992, pp.1.
19 Bland A S. LDEF materials overview. N93-28255, NASA, USA,1993, pp. 741.
20 Funk J G, Strickland J W and Davis J M. Materials and Processes Technical Information system(MAPTIS), LDEF Second Post-Retrieval Symposium, NASA-CP-3194, NASA, USA,1993, pp.1.
21 Bohnhoff-Hlavacek G. Data Bases for LDEF Results. NASA-CP-3194, NASA, USA,1993, pp.1.
22 Armstrong T W and Colborn B L. Scoping estimates of the LDEF satellite induced radioactivity. Contract No. NAS8-38427 for NASA Marshall Space Flight Center, Science Applications International Corporation, September,1990.
23 Benton E V and Heinrich W. Ioning radiation exposure of LDEF. Department of Physics, University of San Francisco, USA,1990, pp.1.
24 Bourassa R J, Gillis J R and Rousslang K W. Atomic oxygen and ultra-violet radiation mission total exposures for LDEF experiment..NASA CP-3134, NASA, USA,1991, pp.643.
25 Gary P. Progress in Organic Coatings, 2003, 47, 424.
26 Passive Optical Sample Assembly(POSA-1). https://historycollection.jsc.nasa.gov/history/shuttle-mir/science/iss/sc-iss-posa1.htm
27 Zwiener J M, Kamenetzky R R, Vaughn J A, et al. SPIE, 1998, 3427, 186.
28 Pippin H G, Woll S L B, Loebs V A, et al. Journal of Spacecraft and Rockets, 2000, 37(5), 567.
29 Pearson S D, Clifton K S. SPIE, 1999, 3784, 4.
30 Finckenor M M, Kamenetzky R R, and Vaughn J A. Further Investigations of the Passive Optical Sample Assembly(POSA) - I Flight Experiment.AIAA, USA, 2001,pp.1.
31 James M Z, Rachel R K, Jason A V, et al. Finckenor. The passive Optical Sample Assembly(POSA)-I Experiment: First Flight Results and Conclusions. AIAA, USA, 1991,pp.1.
32 Harvey G A, Humes D H, Kinard W H. High Performance Polymers, 2000, 12(1), 65.
33 Passive Optical Sample Assembly(POSA-2). https://historycollection.jsc.nasa.gov/history/shuttle-mir/science/iss/sc-iss-posa2.htm.
34 Miria M F. The Materials On International Space Station Experiment(MISSE): First Results From MSFC Investigations. AIAA, 2006, pp.1.
35 Donald A J and John S. Overview of Materials International Space Station Experiment 7B.AIAA, 2009-2687,1. AIAA, USA,1992, pp.1.
36 Dever J A, Miller S K, Sechkar E A, et al. High Performance Polymers, 2008, 20(4-5), 371.
37 Dever J A, Miller S K, Sechkar E A. Effects of the Space Environment on Polymer Film Materials Exposed on the Materials International Space Station Experiment(MISSE 1 and MISSE 2). ESA SP, 2006,pp.616.
38 Finckenor M.In:44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2006, pp.472.
39 Materials International Space Station Experiment(MISSE).https://www1.grc.nasa.gov/space/iss-research/misse/
40 Pippin G, Normand E, Finckenor M. In: National Space and Missile Materials Symposium. Henderson, Nevada, 2008, pp.1.
41 Finckenor M M, Golden J L, O'Rourke M J. In: National Space and Missile Materials Symposium. Henderson, Nevada, 2008, pp.1.
42 Guo A, Yi G T, Ashmead C C, et al. In: Protection of Materials and Structures From the Space Environment. Springer, Berlin, Heidelberg, 2013, pp.389.
43 Finckenor M, Zwiener J M, Pippin G. In: National Space and Missile Materials Symposium. Henderson, Nevada, 2007, pp.1.
44 Finckenor M M, Pierce G. In: 2014 National Space & Missile Materials Symposium(NSMMS). Huntsville, AL, 2014, pp.1.
45 Waters D L, Groh K K, Banks B A, et al. In: Protection of Materials and Structures from the Space Environment. Springer, Berlin, Heidelberg, 2013, pp. 57.
46 Prasad N S. In: Solid State Lasers XVIII: Technology and Devices. International Society for Optics and Photonics, 2009, San Jose, California, United States, pp.7193.
47 Romeo R C, Martin R N.SPIE, 2013, 8837, 54.
48 Jaworske D, Siamidis J. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 17th AIAA/ASME/AHS Adaptive Structures Conference 11th AIAA, USA, 2009, pp. 2687.
49 Prasad N S.SPIE, 2012, 8519, 160.
50 De K K. Annual International Space Station Research and Development Conference, 2014, Chicago, IL, pp.1.
51 De K K, Banks B A, Miller S K R, et al. Handbook of Environmental Degradation of Materials. William Andrew Publishing, 2018, pp.601.
52 Wilt D M, Howard A D, Bradshaw G K, et al. In: 2015 IEEE 42nd Photovoltaic Specialist Conference(PVSC). IEEE, New Orleans, LA, 2015, pp. 978-1·4799-7944-8/15.
53 Finckenor M M. In: 2015 National Space and Missile Materials Sympo-sium(NSMMS). Chantilly, VA, 2015, pp. M15-4619.
54 Ellen R, Arthur B, William F, et al. Results in Physics. 2016, 6, 1185.
55 De K K, Banks B, Santo L. In: 42nd COSPAR Scientific Assembly, Pasadena, CA, 2018, pp. 1.
56 De K K, Banks B A. In: International Space Station Research and Deve-lopment(ISSR&D) Conference. Washington D.C., 2017. pp.1.
57 Santo L.Emergent Materials, 2022, 5(1), 237.
58 Ouchen F, Aga R, Harvey M, et al. Flexible and Printed Electronics, 2021, 6(1), 015012.
59 Heckman E M, Bartsch C M, Kreit E B, et al. Women in Aerospace Materials. Springer, Cham, 2020, pp. 93.
60 Prasad N S, Liu Y, Sun F, et al. SPIE, 2020, 11288, 25.
61 Cano A M, Dunn A.MISSE-11 Ground Experiment Control. 2019. NASA Kennedy Space Center – Internship Final Report. pp.1.
62 MacNinch D, Pacheco D, Tandon A, et al. In: ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, Salt Lake City, Utah, USA, 2019, pp. 59483.
63 Winroth S, Scott, Ishida H.Molecules, 2020, 25(18), 4346.
64 Iguchi D, Ohashi S, Abarro G J E, et al. ACS Omega, 2018, 3(9), 11569.
65 De K K. Materials International Space Station Experiment(MISSE): Overview, NASA Glenn's Experiments and Future NeedsJ. Materials in the Space Environment, 2016(GRC-E-DAA-TN30598).
66 De K K, Banks B A. In: International Space Station Research & Deve-lopment Conference(ISSRDC). San Francisco, CA, 2018, pp.1.
67 De K K, Banks B A.MISSE-Flight Facility Polymers and Composites Experiment 1-4(PCE 1-4). NASA/TM-20205008863, 2021, pp.1.
68 Alan E W, Pan Z Q, Yu C Y. Systems and Networks, 2008, 233.
69 Donald R W, James M Z.SPIE, 1999, 3784, 72.
70 Hummer L. System report for the optical properties monitor(OPM) experiment. NASA/CR-2001-210882. 2001, NASA, pp. 741.
71 Wilkes D R, Naumov S, Maslenikov L. The Mir environment and material effects as observed on the Optical Properties Monitoring(OPM) experiment. AIAA 99-0102.1. AIAA, 1992, pp.1.
72 Wilkes D R, Zwiener J M, Ralph C. Science data report for the optical properties monitor(OPM) experiment. No. NASA/CR-2001-210881. 2001. NASA, 1993, pp. 741.
73 Schmitz C P. Space Science Payloads Optical Properties Monitor(OPM) Mission Flight Anomalies Thermal Analyses//The Tenth Thermal and Fluids Analysis Workshop. 2001.
73 Dinguirard M, Mandeville J C, Van Eesbeek M, et al. Materials Exposure and Degradation Experiment(MEDET) AIAA,2001-5070,1. AIAA, 1992, pp.1.
74 Rejsek-riba V, Inguimber V, Dinguirard M, et al. In:11th International Symposimm on Materials in a Space Environment.Aix-En-Provence, France, 2009, pp.1.
75 Tighe A P, Iwanovsky B, Eesbeek M, et al. In:11th International Symposium on Materials in a Space Environment-ISMSE. Aixen Provence, France, 2009, pp.1.
76 Tighe A, Gabriel S, Goulty D, et al. Materials exposure and degradation experiment(MEDET). AIAA 2001-5070.1. AIAA, USA, 1992, pp.1.
77 Hua X. New Chemical Materials,2008, 36(10), 1(in Chinese).
化信.化工新型材料, 2008, 36(10),1.
78 专家解读神舟七号任务中的固体润滑材料试验.https://www.cas.cn/zt/kjzt/zkyyzrht/szqh/201306/t20130613_3865242.shtml(2022.05.03).
[1] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[2] 刘泊天, 于翔天, 张静静, 姚子洋, 高鸿, 邢焰. 航天器舱外应用材料服役寿命末期耐辐射损伤机制研究[J]. 材料导报, 2022, 36(Z1): 20070234-4.
[3] 赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
[4] 陈徐东, 冯璐, 张锦华, 刘志恒, 董文, 温荣鲲. 不同密度泡沫混凝土梁断裂特性及数值模拟[J]. 材料导报, 2022, 36(4): 20090086-7.
[5] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[6] 季启政, 王一凡, 胡小锋, 李兴冀, 杨剑群, 刘尚合. 航天用氮化镓材料的研究进展[J]. 材料导报, 2022, 36(22): 22050023-6.
[7] 孙承月, 郭鑫鑫, 吴忧, 曹争利, 王豪, 琚丹丹, 王岩, 吴宜勇. 聚酰亚胺气凝胶材料的电子/紫外辐照效应及机理分析[J]. 材料导报, 2022, 36(22): 22040378-8.
[8] 杨传超, 徐鸿杰, 田国峰, 张静静, 高鸿, 卓航, 张梦颖, 战佳宇, 武德珍. 高强高模聚酰亚胺纤维的空间环境适应性研究及在航天领域的应用前景分析[J]. 材料导报, 2022, 36(22): 22040361-5.
[9] 徐志超, 吴涛, 郭学锋, 杨文朋, 樊建峰, 肖思宇. 脉冲电流在镁合金加工中的应用进展[J]. 材料导报, 2022, 36(21): 20100018-10.
[10] 蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 22030040-7.
[11] 卢博, 李安敏, 饶宇, 汪林忠, 左天辰, 胡杨. 稀土Y及热处理对6016铝合金组织与性能的影响[J]. 材料导报, 2022, 36(19): 21070110-8.
[12] 吕秀娟, 唐晓龙, 易红宏, 赵顺征, 任晨阳. 微波诱导催化反应在环境净化中的应用研究进展[J]. 材料导报, 2022, 36(18): 20100163-9.
[13] 王琼, 张伊, 唐浩, 胡云楚, 王文磊. 量子点在光电化学传感器中的研究进展[J]. 材料导报, 2022, 36(18): 20090134-8.
[14] 毛江鸿, 薛倩倩, 张军, 罗林, 马佳星. 电化学修复后钢筋低周疲劳性能退化的时间效应及其影响[J]. 材料导报, 2022, 36(12): 21050263-7.
[15] 冯阳, 汪港, 陈君妍, 康卫民, 邓南平, 程博闻. 高性能锂硫电池研究进展与改进策略[J]. 材料导报, 2022, 36(11): 20080027-14.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed