Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22050078-5    https://doi.org/10.11896/cldb.22050078
  宇航材料 |
溶胶-凝胶法制备聚酰胺-酰亚胺粘结MoS2/SiOx固体润滑涂层及其真空摩擦学性能研究
霍丽霞, 苟世宁, 郭芳君, 贺颖, 冯凯, 周晖*, 张凯锋*
兰州空间技术物理研究所真空技术与物理国防科技重点实验室, 兰州 730010
Study on the Vacuum Tribological Performance of Polyamide-imide Bonded MoS2/SiOx Dry Film Lubricant Prepared by Sol-Gel Process
HUO Lixia, GOU Shining, GUO Fangjun, HE Ying, FENG Kai, ZHOU Hui*, ZHANG Kaifeng*
Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou 730010, China
下载:  全 文 ( PDF ) ( 4829KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提升粘结MoS2固体润滑涂层对空间活动零部件的润滑效果,本工作采用溶胶-凝胶法制备了聚酰亚-酰亚胺粘结MoS2/SiOx固体润滑涂层,通过正硅酸乙酯与γ-(2,3-环氧丙氧)丙基三甲氧基硅烷,在N,N-二甲基乙酰胺中通过共水解反应制备了有机硅溶胶。硅溶胶进一步与聚酰胺-酰亚胺树脂、MoS2混合,获得润滑涂料,并喷涂于G95Cr18基体表面,经固化获得聚酰亚-酰亚胺粘结MoS2/SiOx固体润滑涂层。采用傅里叶红外光谱分析了粘结剂结构,利用热失重分析仪和差示扫描量热仪表征了涂层的热性能。通过真空球盘摩擦试验机研究了涂层的真空摩擦学性能,并采用扫描电镜对磨痕进行了表征。结果表明:SiOx表面的环氧基团能够与聚酰胺-酰亚胺在固化过程中产生化学键合作用,增加了两相的相容性,SiOx在涂层中的分布均匀;随着SiOx含量的增加,润滑涂层的热稳定性和聚酰胺-酰亚胺的Tg提高;SiOx在涂层中分散均匀,含量达到2.0%(质量分数)以上时,能够有效降低涂层的磨损,在涂层中与固体润滑剂MoS2产生协同润滑效果,通过产生滚动作用来提升润滑涂层的强度,从而起到降低涂层真空摩擦系数与磨损率的作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
霍丽霞
苟世宁
郭芳君
贺颖
冯凯
周晖
张凯锋
关键词:  聚酰胺-酰亚胺  溶胶-凝胶法  固体润滑涂层  真空摩擦学性能    
Abstract: Anonaqueous sol-gel route is introduced to prepare polyamide-imide bonded MoS2/SiOx dry film lubricant, so as to improve the tribological performances of the lubricants which were used on the components of the spacecraft. The sol-gel process was started from tetraethoxysilane (TEOS) and KH-560 hydrolyzing in N,N-dimethylacetamide. After the solution mixing with polyamide-imide and MoS2, the paint of the dry film lubricant was sprayed onto the G95Cr18 substrate. The dry film lubricants were obtained by the curing of polyamide-imide and polycondensation of the sol-gel. The chemical composition of the dry film lubricants were studied by Fourier transform infrared spectroscopy. The thermal properties of the dry film lubricants were characterized by thermogravimetric analysis and differential scanning calorimetry. A vacuum ball-on-disk friction and wear tester was used to evaluate the tribological behavior. The wear tracks were characterized by scanning electron microscope. Results show that some of the epoxy groups in the silica gel have reacted with the PAI binder. The silica element in the dry film lubricants showed uniform distribution. The SiOx grafted with PAI during the film lubricants curing, which increases the compatibility of the two phases. The thermal stability and the glass transition temperature of the film lubricants increased with increasing SiOx content. The wear resistance property was evidently enhanced when the amount of SiOx reached to 2.0wt%. The friction coefficient and worn rate in vacuum decreased profiting from the rolling effect of the SiOx and high strength of the film lubricants when the SiOx was introduced into the film.
Key words:  polyamide-imide    sol-gel    dry film lubricant    vacuum tribological performance
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TG174.422  
基金资助: 真空技术与物理重点实验室基金项目(6142207040101)
通讯作者:  * zhouhui510@sina.com; zhangkf510@sina.com   
作者简介:  霍丽霞,兰州空间技术物理研究所高级工程师。2009年兰州大学化学系高分子化学与物理专业硕士毕业,2009年兰州空间技术物理研究所工作至今,2022年兰州大学高分子化学与物理专业博士毕业。目前主要从事表面工程技术与空间摩擦学等方面的研究工作,发表论文30余篇。入选2019年度中国航天科技集团有限公司青年拔尖人才。
周晖,兰州空间技术物理研究所研究员、博士研究生导师。1994年兰州空间技术物理研究所工作至今,2007年兰州大学材料物理与化学专业博士毕业。目前主要从事表面工程技术与空间摩擦学等方面的研究工作,发表论文80余篇。担任ISO/TC107 SC9(真空物理气相沉积涂层)专家委员会主任委员、航天科技集团表面工程工艺技术中心副理事长、中国空间技术研究院学术技术带头人,入选甘肃省领军人才。
引用本文:    
霍丽霞, 苟世宁, 郭芳君, 贺颖, 冯凯, 周晖, 张凯锋. 溶胶-凝胶法制备聚酰胺-酰亚胺粘结MoS2/SiOx固体润滑涂层及其真空摩擦学性能研究[J]. 材料导报, 2022, 36(22): 22050078-5.
HUO Lixia, GOU Shining, GUO Fangjun, HE Ying, FENG Kai, ZHOU Hui, ZHANG Kaifeng. Study on the Vacuum Tribological Performance of Polyamide-imide Bonded MoS2/SiOx Dry Film Lubricant Prepared by Sol-Gel Process. Materials Reports, 2022, 36(22): 22050078-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050078  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22050078
1 Campbell M E. Solid Lubricants: A Survey, US Gov., US, 1972, pp. 2.
2 Emyr W R. Space Tribology Handbook, 4th edition, ESR Technology Ltd., UK, 2007, pp. 258.
3 Sievers E D, Warden K H. In: Proceedings of the 40th Aerospace Mechanisms Sympisium. Cocoa Beach, 2010, pp.177.
4 Endo T, Iijima T, Kaneko Y, et al. Wear, 1995, 190(2), 219.
5 Najafabadi A H, Mozaffarinia R, Rahimi H, et al. Surface Engineering, 2013, 29, 249.
6 Li Y, Fu S Y, Li Y Q, et al. Composites Science and Technology, 2007, 67, 2408.
7 Zhang Y H, Li Y, Fu S Y, et al. Polymer, 2005, 46, 8373.
8 Spírková M, Brus J, Baldrian J, et al. Surface Coatings International Part B, 2005, 88, 237.
9 Karataş S, Kιzιlkaya C, Kayaman-Apohan N, et al. Progress in Organic Coatings, 2007, 60(2), 140.
10 Hsiue G H, Chen J K, Liu Y L. Journal of Applied Polymer Science, 2000, 76(11), 1609.
11 Qin J Q, Zhao H, Liu X Y, et al. Polymer Communication, 2007, 48, 3379.
12 Xiao X Y, Hao C C. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 359, 82.
13 Sang I S, Jae H K, Kyung H C, et al. Surface & Coatings Technology, 2006, 200(11), 3468.
14 Rodič P, Iskra J, Milošev I. Journal of Non-Crystalline Solids, 2014, 396-397, 25.
15 Kirtay S. Progress in Organic Coatings, 2014, 77, 1861.
16 Kumar D, Wu X, Fu Q, et al. Applied Surface Science, 2015, 344, 205.
17 Vanerjee A D, Kessman J A, Cairns R D, et al. Surface & Coatings Technology, 2014, 260, 214.
18 Belon C, Schmitt M, Bistac S, et al. Applied Surface Science, 2011, 257, 6618.
19 Sironmani P, Muthiah S, Kuppaianpoosari M, et al. Progress in Organic Coatings, 2015, 81, 132.
20 Mustafa Ç, Emre A. Journal of Applied Polymer Science, 2019, 136, 47399.
21 Zhao G R, Wang H G, Ren J F, et al. Polymer composites, 2020, 41, 4872.
22 Ma S S, Tian H C, Fei J, et al. Journal of Applied Polymer Science, 2022, 139(37), e52883.
23 Jin Q F, Liao G X, Feng X B, et al. Journal of Sol-Gel Science and Technology, 2008, 46(2), 208.
24 Lai S Q, Li T S, Wang F D, et al. Wear, 2007, 262(9-10), 1048.
25 Yang C P, Yang C C, Chen R S. Journal of Polymer Science Part A-Polymer Chemistry, 2001, 39(15), 2591.
26 Ma Y J, Chen L, Ye Y P, et al. Progress in Organic Coatings, 2019, 127, 348.
[1] 贾玉娜, 梁可可, 焦秀玲, 陈代荣, 张剑, 吕毅, 赵英民. Al2O3-SiO2-B2O3连续纤维的制备及力学性能[J]. 材料导报, 2021, 35(14): 14025-14029.
[2] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[3] 胡玉林, 李永进, 谢燕春, 阳生红, 张曰理. 掺Ni铁酸铋纳米粉的制备及光催化性能[J]. 材料导报, 2020, 34(18): 18009-18013.
[4] 胡文宇, 王笑乙, 袁欢, 刘禹彤, 陈雨, 张秋平, 张嘉羲, 罗凯怡, 李靖, 徐明. Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究[J]. 材料导报, 2020, 34(10): 10018-10023.
[5] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[6] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
[7] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[8] 周亚,李萍,左迎峰,袁光明,李贤军,吴义强. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989-2996.
[9] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[10] 山世浩, 王庆国, 曲兆明, 成伟, 李昂. 二氧化钒薄膜材料相变临界场强调控方法研究[J]. 材料导报, 2018, 32(6): 870-873.
[11] 许连强,唐志雄,唐少龙,都有为. 新型溶胶-凝胶法制备CoPd合金纳米颗粒及其磁性能表征[J]. 《材料导报》期刊社, 2018, 32(10): 1587-1591.
[12] 郭思彤,吴会军,杨丽修,刘燕妮,杨建明. 制备参数对SiO2气凝胶结构与性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 38-44.
[13] 陈晓萍, 马俊, 李宝华, 康飞宇. 三维结构磷酸铁锂纳米线阵列的制备及其电化学性能[J]. 《材料导报》期刊社, 2017, 31(4): 1-4.
[14] 陈 雨,余 飞,刘禹彤,徐小楠,张秋平,袁 欢,徐 明. 不同合成过程对溶胶-凝胶法制备的ZnO/Ag纳米复合材料光催化性能的影响[J]. 《材料导报》期刊社, 2017, 31(24): 120-124.
[15] 文钰斌, 刘新红, 顾强, 陈晓雨, 贾全利, 杨林, 马腾. 不同碳源对纳米锌铝尖晶石合成及颗粒粒径的影响*[J]. 《材料导报》期刊社, 2017, 31(18): 109-113.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed