Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (4): 1-4    https://doi.org/10.11896/j.issn.1005-023X.2017.04.001
  材料研究 |
三维结构磷酸铁锂纳米线阵列的制备及其电化学性能
陈晓萍1, 马俊2, 李宝华1, 康飞宇1
1 清华大学材料学院, 北京 100084;
2 深圳大学材料学院, 深圳 518060
Preparation and Electrochemical Performance of 3D Structured
LiFePO4 Nanowire Arrays
CHEN Xiaoping1, MA Jun2, LI Baohua1, KANG Feiyu1
1 College of Materials Science and Engineering, Tsinghua University, Beijing 100084;
2 College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060
下载:  全 文 ( PDF ) ( 1714KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用阳极氧化铝模板(AAO),通过溶胶-凝胶法制备出磷酸铁锂(LiFePO4)纳米线阵列。场发射扫描电镜(FESEM)和透射电镜(TEM)表征均说明制得的LiFePO4阵列是分散均匀且相互平行的。X射线衍射(XRD)和能谱图(EDS)表征均说明LiFePO4纳米线是纯相橄榄石型结构。电化学性能测试表明纳米线阵列具有较好的循环稳定性,1C电流密度下循环100次后容量几乎不衰减,容量保持率为99.1%,10C电流密度下循环350次后容量保持率为91.6%。纳米线阵列的倍率性能较同等条件下制备的纳米粉体有较大提升,0.1C、10C电流密度下容量可分别达156.4 mAh/g、106.9 mAh/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈晓萍
马俊
李宝华
康飞宇
关键词:  磷酸铁锂  三维结构纳米线阵列  阳极氧化铝模板  溶胶-凝胶法    
Abstract: The LiFePO4 nanowire arrays was successfully fabricated by a sol-gel method using anodic oxide aluminum (AAO) as the template. The field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images showed the synthesized LiFePO4 nanowire arrays were monodispersed and parallel to one another. The X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) investigations jointly demonstrated a pure olivine structure of the synthesized LiFePO4 nanowire arrays.The LiFePO4 nanowire arrays also showed excellent electrochemical performance as cathode materials of lithium ion battery.Compared with nanoparticles prepared by the same condition,the nanowire arrays exhibited desirable rate performance (156.4 mAh/g at 0.1C and 106.9 mAh/g at 10C) and excellent cycle stability (99.1% after 100 cycles at 1C and 91.6% after 350 cycles at 10C).
Key words:  lithium iron phosphate    three-dimensional structured nanowire array    anodic aluminum oxide template    sol-gel method
出版日期:  2017-02-25      发布日期:  2018-05-02
ZTFLH:  TB321  
  O646  
通讯作者:  康飞宇:通讯作者,男,1962年生,博士,教授,主要从事新型能源材料、锂离子电池、超级电容器等方面的制备研究 E-mail:fykang@mail.tsinghua.edu.cn   
作者简介:  陈晓萍:女,1990年生,硕士研究生,主要从事锂离子电池磷酸铁锂正极材料的制备研究 E-mail:hilary_0323@163.com
引用本文:    
陈晓萍, 马俊, 李宝华, 康飞宇. 三维结构磷酸铁锂纳米线阵列的制备及其电化学性能[J]. 《材料导报》期刊社, 2017, 31(4): 1-4.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.04.001  或          https://www.mater-rep.com/CN/Y2017/V31/I4/1
1 Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science,2001,293(5533):1289.
2 Garnett E C, Cai W, Cha J J, et al. Self-limited plasmonic welding of silver nanowire junctions[J]. Nat Mater,2012,11(3):241.
3 Balasubramanian B, Das B, Skomski R, et al. Novel nanostructured rare-earth-free magnetic materials with high energy products[J]. Adv Mater,2013,25(42):6090.
4 Stella L, Zhang P, García-Vidal F J, et al. Performance of nonlocal optics when applied to plasmonic nanostructures[J]. J Phys Chem C,2013,117(17):8941.
5 Bianco A, Cheng H, Enoki T, et al. All in the graphene family-A recommended nomenclature for two-dimensional carbon materials[J]. Carbon,2013,65:1.
6 Lieb E, Mattis D. Mathematical physics in one dimension: exactly soluble models of interacting particles[M]. New York:Academic Press,2013.
7 Suryawanshi S, Warule S, Patil S, et al. Vapor-liquid-solid growth of one-dimensional tin sulfide (SnS) nanostructures with promising field emission behavior[J]. ACS Appl Mater Interfaces,2014,6(3):2018.
8 Lee M, Hong W, Jeong H, et al. Graphene oxide assisted sponta-neous growth of V2O5 nanowires at room temperature[J]. Nanoscale,2014,6(19):11066.
9 Wang B, Ostrikov K, Laan T, et al. Carbon nanorods and graphene-like nanosheets by hot filament CVD: Growth mechanisms and electron field emission[J]. J Mater Chem C,2013,1(46):7703.
10 Jian J, Shi W, Li Z, et al. Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3d nanotube arrays[J]. ACS Appl Mater Interfaces,2012,4(1):171.
11 Wang D, Zhang L, Lee W, et al. Novel three-dimensional nanoporous alumina as a template for hierarchical TiO2 nanotube arrays[J]. Small,2013,9(7):1025.
12 Ye T,Gao Y,Yin Y.Surface-enhanced Raman scattering effects of gold nanorods prepared by polycarbonate membranes[J].Acta Phys Sin,2013,62(12):127801(in Chinese).
叶通, 高云, 尹彦. 利用聚碳酸酯模板制备的金纳米棒的表面增强Raman散射效应研究[J]. 物理学报,2013,62(12):127801.
13 Favors Z, Wang W, Bay H, et al. Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries[J]. Sci Rep,2014,4:4605.
14 Liu J, Song K, van Aken P A, et al. Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries[J]. Nano Lett,2014,14(5):2597.
15 Reddy A, Shaijumon M, Gowda S, et al. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries[J]. Nano Lett,2009,9(3):1002.
16 Yao Y, Liu N, McDowell M, et al. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings[J]. Energy Environ Sci,2012,5(7):7927.
17 马俊. 纳米结构磷酸铁锂正极材料的制备及其掺杂和表面改性[D].北京:清华大学,2010.
18 Liu Y, Cao C, Li J. Enhanced electrochemical performance of carbon nanospheres LiFePO4 composite by PEG based sol-gel synthesis[J]. Electrochim Acta,2010,55(12):3921.
19 Hamid N A, Wennig S, Hardt S, et al. High-capacity cathodes for lithium-ion batteries from nanostructured LiFePO4 synthesized by highly-flexible and scalable flame spray pyrolysis[J]. J Power Sources,2012,216:76.
20 Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nat Mater,2002,1(2):123
21 Yang J, Wang J, Wang D, et al. 3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries[J]. J Power Sources,2012,208:340.
22 Liu X, Wang J, Zhang J, et al. Fabrication and characterization of LiFePO4 nanotubes by a sol-gel-AAO template process[J]. Chin J Chem Phys,2006,19(6):530.
23 Duan D H, Tian Y, Zhang Z L, et al. Preparation of LiFePO4 nanowires arrays by sol-gel template method[J]. J Synth Cryst,2012,41(1):53(in Chinese).
段东红, 田野, 张忠林, 等. 溶胶-凝胶模板法制备磷酸铁锂纳米线阵列[J]. 人工晶体学报,2012,41(1):53.
[1] 杜金晶, 孙晔, 朱军, 李倩, 王斌, 刘景田, 孟晓荣. 五氧化二钒薄膜材料制备方法研究进展[J]. 材料导报, 2024, 38(5): 22100297-9.
[2] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[3] 李伟, 王洪利, 刘学琰, 范智禹, 吴怡逸, 聂登攀, 陶文亮. 表面疏油Al2O3陶瓷膜的制备及表征[J]. 材料导报, 2024, 38(13): 22120002-6.
[4] 霍丽霞, 苟世宁, 郭芳君, 贺颖, 冯凯, 周晖, 张凯锋. 溶胶-凝胶法制备聚酰胺-酰亚胺粘结MoS2/SiOx固体润滑涂层及其真空摩擦学性能研究[J]. 材料导报, 2022, 36(22): 22050078-5.
[5] 贾玉娜, 梁可可, 焦秀玲, 陈代荣, 张剑, 吕毅, 赵英民. Al2O3-SiO2-B2O3连续纤维的制备及力学性能[J]. 材料导报, 2021, 35(14): 14025-14029.
[6] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[7] 袁梅梅, 徐汝辉, 姚耀春. 锂离子电池正极材料LiFePO4的表面碳包覆改性研究进展[J]. 材料导报, 2020, 34(19): 19061-19066.
[8] 胡玉林, 李永进, 谢燕春, 阳生红, 张曰理. 掺Ni铁酸铋纳米粉的制备及光催化性能[J]. 材料导报, 2020, 34(18): 18009-18013.
[9] 胡文宇, 王笑乙, 袁欢, 刘禹彤, 陈雨, 张秋平, 张嘉羲, 罗凯怡, 李靖, 徐明. Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究[J]. 材料导报, 2020, 34(10): 10018-10023.
[10] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[11] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
[12] 陈坤, 李君, 曲大为, 卢强. 基于LCA评价模型的动力电池回收阶段环境性研究[J]. 材料导报, 2019, 33(z1): 53-56.
[13] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[14] 田柳文, 于华, 章文峰, 陈涛, 黄跃龙, 郑先峰. 锂离子电池的明星材料磷酸铁锂:基本性能、优化改性及未来展望[J]. 材料导报, 2019, 33(21): 3561-3579.
[15] 周亚,李萍,左迎峰,袁光明,李贤军,吴义强. 无机质增强木材研究进展与发展趋势[J]. 材料导报, 2019, 33(17): 2989-2996.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed