Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22060160-6    https://doi.org/10.11896/cldb.22060160
  高分子与聚合物基复合材料 |
应用于静电键合的透光聚氨酯弹性体阴极材料的研究
赵浩成1,*, 刘翠荣2, 姚志广3, 张莹1, 张志超1, 刘茜秀1
1 山西能源学院能源化学与材料工程系,山西 晋中 030600
2 太原科技大学材料科学与工程学院,太原 030024
3 山西能源学院机电工程系,山西 晋中 030600
Research on Light-transmitting Polyurethane Elastomer Cathode Materials Applied in Electrostatic Bonding
ZHAO Haocheng1,*, LIU Cuirong2, YAO Zhiguang3, ZHANG Ying1, ZHANG Zhichao1, LIU Qianxiu1
1 Faculty of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Jinzhong 030600, Shanxi, China
2 College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
3 Faculty of Mechanical and Electrical Engineering, Shanxi Institute of Energy,Jinzhong 030600, Shanxi, China
下载:  全 文 ( PDF ) ( 5153KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过原料配方选择、分子结构设计以及合成工艺优化等方法,制备了三种可用于静电键合的高透光聚氨酯弹性体电解质阴极材料(TPUEEs),该材料具有无定形结构,结晶度低,在可见光区的透光率均达到80%以上;TPUEEs具有良好的低温柔顺性和热稳定性,其玻璃化转变温度Tg均低于-40 ℃,其5%热分解温度Td,5%均高于200 ℃;TPUEEs在静电键合温度(70 ℃)下具有较高的离子导电率,其中TPUEE3的离子导电率达到1.9×10-3 S·cm-1,满足静电键合对阴极材料的要求。通过热引导动态场静电键合工艺实现TPUEEs和铝片(Al)的静电键合封接(TPUEEs-Al),在SEM图中可观察到清晰的中间键合层,其中TPUEE3-Al的键合强度达到0.91 MPa。本研究实现了透光聚合物阴极材料的静电键合封接,为静电键合在柔性光电类器件的应用提供了理论基础和参考经验。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵浩成
刘翠荣
姚志广
张莹
张志超
刘茜秀
关键词:  静电键合  透光率  聚氨酯弹性体  柔性器件  聚合物电解质    
Abstract: Three kinds of transparent polyurethane elastomer electrolyte cathode materials (TPUEEs) for electrostatic bonding are prepared through raw material formulation selection, molecular structure design and synthesis process optimization. Having theamorphous structure, the crystallinity of the materials are low, and their transmittance in the visible region are more than 80%. The TPUEEs are characterized by good heat resis-tance that the 5% thermal decomposition temperatures Td, 5% are higher than 200 ℃. The glass transition temperatures Tg are lower than -40 ℃ showing good flexibility. All TPUEEs have high ionic conductivity meeting the requirements of electrostatic bonding for cathode materials, and the highest value at 70 ℃ (the temperature required for bonding) is reached to 1.9×10-3 S·cm-1 for TPUEE3. The jointing of TPUEEs and aluminum (Al) sheet (TPUEEs-Al) is realized by electrostatic bonding characterized by thermal guidance and dynamic field. A clear intermediate bonding layer of TPUEEs-Al can be observed in the SEM image, in which the bonding strength of TPUEE3-Al can be reached to 0.91 MPa. This study realizes the electrostatic bonding seal of light-transmitting polymer cathode materials, which provides some theoretical basis and reference experience for the application of electrostatic bonding in flexible optoelectronic devices.
Key words:  electrostatic bonding    transmittance    polyurethane elastomer    flexible device    polymer electrolyte
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51875384);山西省自然科学研究面上项目(202203021211284)
通讯作者:  * 赵浩成,山西能源学院能源化学与材料工程系副教授。2009年获得太原理工大学材料科学与工程学院高分子材料与工程专业学士学位,2012年获得太原理工大学材料科学与工程学院材料加工工程专业硕士学位,2020年获得太原科技大学材料科学与工程学院材料科学与工程专业博士学位。主要从事柔性器件封装材料与先进封装技术开发研究,发表论文20余篇,出版专著1部,授权专利5项。zhaohc@sxie.edu.cn   
引用本文:    
赵浩成, 刘翠荣, 姚志广, 张莹, 张志超, 刘茜秀. 应用于静电键合的透光聚氨酯弹性体阴极材料的研究[J]. 材料导报, 2023, 37(22): 22060160-6.
ZHAO Haocheng, LIU Cuirong, YAO Zhiguang, ZHANG Ying, ZHANG Zhichao, LIU Qianxiu. Research on Light-transmitting Polyurethane Elastomer Cathode Materials Applied in Electrostatic Bonding. Materials Reports, 2023, 37(22): 22060160-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060160  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22060160
1 Knapkiewicz P. Semiconductor Science and Technology, 2019, 34(3), 035005.
2 Hu L F, Xue Y Z, Wang H. Journal of Alloys and Compounds, 2019, 789, 558.
3 Aditi, Gopal R. Microsystem Technologies, 2017, 23, 81.
4 Zhao H C, Zhang W X, Yin X, et al. RSC Advances, 2020, 10, 13267.
5 Du C, Liu C R, Yin X, et al. Advances in Mechanical Engineering, 2021, 13, 16878140211007712.
6 Zhao H C, Zhang W X, Yin X, et al. Chemical Papers, 2020, 74, 3975.
7 Li T T, Liu J C. Materials Reports, 2021, 35(2), 02161 (in Chinese).
李廷廷, 刘锦春. 材料导报, 2021, 35(2), 02161.
8 Mahmood K, Zia K M, Aftab W, et al. International Journal of Biological Macromolecules, 2018, 113, 150.
9 Wang H B, Li X Y, Ji Y, et al. Journal of Materials Chemistry B, 2022, 10, 2933.
10 Jee C H, Kang K S, Bae J H, et al. Polymer-Plastics Technology and Engineering, 2018, 57(15), 1518.
11 Ouyang C F, Zhao C, Li W, et al. Macromolecular Materials and Engineering, 2020, 305(6), 2000089.
12 Mundinamani S. International Journal of Hydrogen Energy, 2019, 44, 11240.
13 Zhao H C, Liang F N, Liu Q X, et al. Acta Materiae Compositae Sinica, 2021, 38(1), 111 (in Chinese).
赵浩成, 梁芳楠, 刘茜秀, 等. 复合材料学报, 2021, 38(1), 11.
14 Wu Y L, Li X F, Zhao H C, et al. Organic Electronics, 2020, 76, 105487.
15 Zhang Z C, Liang F N, You X R, et al. Optical Materials, 2021, 121, 111603.
16 Bao J J, Qu X B, Qi G Q, et al. Solid State Ionics, 2018, 320, 55.
17 Kong W B, Lei Y, Yuan Y, et al. Macromolecular Research, 2017, 25, 864.
18 Li X Y, Zhao Z S, Zhou J W, et al. Chemical Engineering Science, 2020, 221, 115710.
19 Khodaie M, Saeidi A, Khonakdar H A, et al. Progress in Organic Coa-tings, 2020, 140, 105534.
20 Gu J, Kwon D, Ahn J, et al. ACS Applied Materials & Interfaces, 2020, 12(9), 10908.
21 Hou P, Zhang J Z, Xun Z Y, et al. Materials Reports, 2022, 36(5), 2006009 (in Chinese).
侯璞, 张九州, 寻之玉, 等. 材料导报, 2022, 36(5), 2006009.
22 Liu D, Yuan L, Xu H Y, et al. Polymer Composites, 2018, 40, 2768.
23 Hu L F, Xue Y Z, Wang H. Journal of Alloys and Compounds, 2019, 789, 558.
24 Liu Y F, Dai T T, Xie P Q, et al. Modern Physics Letters B, 2020, 34, 2050369.
25 Behera B, Dhanekar S, Singh G, et al. Microsystem Technologies, 2020, 27, 863.
[1] 刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
[2] 潘旺, 夏洋洋, 张超, 方宏远, 王复明. 新型聚氨酯弹性体注浆材料的压缩尺寸效应及应变率效应[J]. 材料导报, 2023, 37(15): 22020115-7.
[3] 宋承哲, 张冠华, 屈丰来, 冯良勇. 热塑性聚氨酯改性环氧树脂的制备与微观特性表征[J]. 材料导报, 2023, 37(10): 21060009-7.
[4] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[5] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[6] 李廷廷, 刘锦春. 硬段含量对聚酯型温敏聚氨酯弹性体性能的影响[J]. 材料导报, 2021, 35(2): 2161-2165.
[7] 赵亚丽, 贾琨, 赵岩, 马玉峰, 李旭峰. 金属光子晶体结构对其透光率强度和曲线宽度的影响[J]. 材料导报, 2021, 35(14): 14171-14175.
[8] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[9] 赖海文, 韩会丽, 黄伟宏, 董娴, 李冰之, 沈辉, 梁宗存. 户外运行17年单晶硅光伏组件性能失效研究[J]. 材料导报, 2019, 33(2): 215-219.
[10] 司伟, 丁超, 潘伟. 聚丙烯酸铵和柠檬酸铵分散剂对钇铝石榴石陶瓷透光率的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1209-1212.
[11] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[12] 董文举, 孔令斌, 康龙, 冉奋. 超级电容器电极材料及器件的柔性化与微型化[J]. 材料导报, 2018, 32(17): 2912-2919.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed