Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 22020115-7    https://doi.org/10.11896/cldb.22020115
  高分子与聚合物基复合材料 |
新型聚氨酯弹性体注浆材料的压缩尺寸效应及应变率效应
潘旺1,2,3, 夏洋洋1,2,3, 张超1,2,3,*, 方宏远1,2,3, 王复明1,2,3
1 郑州大学水利与交通学院,郑州 450001
2 重大基础设施检测修复技术国家地方联合工程实验室,郑州 450001
3 地下工程灾变防控省部共建协同创新中心,郑州 450001
Compression Size Effect and Strain Rate Effect of a New Polyurethane Elastomer Grouting Material
PAN Wang1,2,3, XIA Yangyang1,2,3, ZHANG Chao1,2,3,*, FANG Hongyuan1,2,3, WANG Fuming1,2,3
1 School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
2 National Local Joint Engineering Laboratory of Major Infrastructure Testing and Rehabilitation Technology, Zhengzhou 450001, China
3 Collaborative Innovation Center for Disaster Prevention and Control of Underground Engineering Jointly Built by Provinces and Ministries, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 13611KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了解决现有风电基础注浆加固材料强度低、抗变形能力弱及可注性差等难题,制备了一种新型聚氨酯弹性体注浆材料。在考虑尺寸效应和应变率效应的影响下进行了单轴压缩试验研究,得到了压缩应力-应变关系曲线,提出了一种适用于该聚氨酯弹性体注浆材料的四参数唯象本构模型。结果表明:在该材料达到极限破坏之前,其应力-应变关系分为弹性阶段、屈服阶段、应变软化阶段三个阶段;材料的弹性模量、抗压强度、软化应力、能量密度等力学参数随应变率增大而增大,随试件尺寸的增大呈现先减小后增大的趋势,且相比尺寸效应,应变率效应的影响更为显著。本工作提出的四参数唯象本构模型能准确地表征本材料在不同尺寸时的压缩应力-应变关系。此本构模型为该聚氨酯弹性体注浆材料的理论计算和工程应用提供了重要的科学依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘旺
夏洋洋
张超
方宏远
王复明
关键词:  聚氨酯弹性体注浆材料  压缩性能  应变率  尺寸效应  本构模型    
Abstract: In order to solve the problems of low strength, weak anti-deformation ability and poor injectivity of existing grouting reinforcement materials for wind power foundation, a new polyurethane elastomer grouting material was prepared. Considering the size effect and strain rate effect, the uniaxial compression test was carried out, the compressive stress-strain relationship curve was obtained, and a four-parameter phenomenological constitutive model suitable for the polyurethane elastomer grouting material was proposed. The results show that the stress-strain relationship can be divided into three stages:elastic stage, yield stage and strain-softening stage before the material reaches the ultimate failure stage. The elastic modulus, compressive strength, softening stress, energy density and other mechanical parameters of the material increase with the increase of strain rate, and decrease first and then increase with the increase of specimen size, and the strain rate effect is more significant than the size effect. In addition, the four-parameter phenomenological constitutive model proposed in this work can accurately characterize the stress-strain relationship of the material. The constitutive model provides an important scientific basis for theoretical calculation and engineering application of the polyurethane elastomer grouting material.
Key words:  polyurethane elastomer grouting material    compression performance    strain rate    size effect    constitutive model
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TU502.6  
基金资助: 国家自然科学基金(51978630;52178368;51909242);中国博士后基金(2021T140619;2021M692939);河南省科技攻关(212102310280);河南省博士后科研项目启动资助(202001016)
通讯作者:  * 张超,郑州大学水利科学与工程学院副教授、硕士研究生导师。2008年西北农林科技大学土木工程专业本科毕业,2011年西北农林科技大学结构工程专业硕士毕业,2018年德国魏玛包豪斯大学结构工程博士毕业,2019年到郑州大学工作至今。目前主要从事工程修复材料的多尺度物理力学性能与提升、先进结构材料的设计与应用等方面的研究工作。发表论文40余篇,包括Composite part B:Engineering、Engineering Geology、Nanoscale、Construction and Building Materials、《岩土力学》等,申请和授权专利20余项。chao.zhang.zzu@outlook.com   
作者简介:  潘旺,2020年7月于郑州大学获得工学学士学位。现为郑州大学水利科学与工程学院硕士研究生,在王复明院士、方宏远教授和张超副教授的指导下进行研究。目前主要研究领域为高聚物注浆材料的动静态力学性能。
引用本文:    
潘旺, 夏洋洋, 张超, 方宏远, 王复明. 新型聚氨酯弹性体注浆材料的压缩尺寸效应及应变率效应[J]. 材料导报, 2023, 37(15): 22020115-7.
PAN Wang, XIA Yangyang, ZHANG Chao, FANG Hongyuan, WANG Fuming. Compression Size Effect and Strain Rate Effect of a New Polyurethane Elastomer Grouting Material. Materials Reports, 2023, 37(15): 22020115-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020115  或          http://www.mater-rep.com/CN/Y2023/V37/I15/22020115
1 Yang Y H, Li Y, Du X L. Journal of Building Materials, 2010, 13 (5), 601( in Chinese).
杨玉红, 李悦, 杜修力. 建筑材料学报, 2010, 13 (5), 601.
2 Lyu W R, Zhong C Q, Peng Z, et al. Acta Energiae Solaris Sinica, 2021, 42 (6), 272 ( in Chinese).
吕伟荣, 钟传旗, 彭柱, 等. 太阳能学报, 2021, 42 (6), 272.
3 Li J P, Wang Z Y, Chen J X, et al. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (11), 107 ( in Chinese).
李进平, 王振扬, 陈加兴, 等. 华中科技大学学报(自然科学版), 2021, 49 (11), 107.
4 Zhao J, Niu M X, Zhou J J, et al. Journal of Building Materials, 2021, 24 (1), 22 ( in Chinese).
赵军, 牛淼鑫, 周甲佳, 等. 建筑材料学报, 2021, 24(1), 22.
5 Wei Y, Wang F M, Gao X, et al. Journal of Materials in Civil Engineering, 2017, 29(9), 4017101.
6 Wang F M, Li J, Shi M S, et al. Journal of Hydroelectric Engineering, 2016, 35 (12), 1 ( in Chinese).
王复明, 李嘉, 石明生, 等. 水力发电学报, 2016, 35(12), 1.
7 Wang R, Wang F M, Xu J G, et al. Ocean Engineering, 2019, 181, 121.
8 Fang H Y, Zhao P, Zhang C, et al. Construction and Building Materials, 2022, 318, 125951.
9 Gao X, Huang W, Wei Y, et al. Acta Materiae Compositae Sinica, 2017, 34(2), 438 (in Chinese).
高翔, 黄卫, 魏亚, 等. 复合材料学报, 2017, 34(2), 438.
10 Li M J, Du M R, Wang F M, et al. Construction and Building Materials, 2020, 259, 119797.
11 Lin Y L, Lu F Y, Wang X Y, et al. Chinese Journal of High Pressure Physics, 2006(1), 88 ( in Chinese).
林玉亮, 卢芳云, 王晓燕, 等. 高压物理学报, 2006(1), 88.
12 Liu K, Liang W, Ren F M, et al. Construction and Building Materials, 2019, 206, 270.
13 Wang Z Y, Du M R, Fang H Y, et al. Construction and Building Materials, 2021, 301, 124092.
14 Huang Z C, Su Q, Huang J J, et al. Railway Engineering Science, 2022, 30, 204.
15 China Academy of Building Materials Sciences. Strength inspection method of cement cement (ISO method):GB/T17671-1999, China Standard Press, China, 1999 (in Chinese).
中国建筑材料科学研究院. 水泥胶砂强度检验方法(ISO法):GB/T17671-1999, 中国标准出版社, 1999.
16 Somarathna H M C C, Raman S N, Mohotti D, et al. Construction and Building Materials, 2020, 254, 119203.
17 Xiao S, Hossain M M, Liu P, et al. Materials & Design, 2017, 132, 419.
18 Zhu S, Lempesis N, In't Veld P J, et al. Macromolecules, 2018, 51(22), 9306.
19 Zhao X B, Du L, Zhang X P, et al. Polymer Materials Science and Engineering, 2002(2), 16 ( in Chinese).
赵孝彬, 杜磊, 张小平, 等. 高分子材料科学与工程, 2002(2), 16.
20 G'Sell C, Aly-Helal N A, Jonas J J. Journal of Materials Science, 1983, 18(6), 1731.
21 Brostow W. Failure of plastics, Hansler Publishers, GER, 1986, pp. 486.
[1] 刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
[2] 平凡, 赵宝艳, 包锦标, 张利. EPDM对VMQ硅橡胶泡沫发泡行为及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080090-5.
[3] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[4] 邓云飞, 胡昂, 任光辉, 魏刚. 7050-T7351铝合金力学性能测试及本构模型研究[J]. 材料导报, 2023, 37(3): 21060149-7.
[5] 相泽辉, 王俊, 牛建刚, 周杰. FRP约束混凝土关键问题综述[J]. 材料导报, 2023, 37(1): 20110045-8.
[6] 徐长锋, 周友行, 肖加其, 李昱泽, 易倩. 长径比和应变率对海泡石的破碎能耗影响研究[J]. 材料导报, 2022, 36(Z1): 20120211-5.
[7] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[8] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[9] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[10] 林长宇, 王启睿, 杨立云, 吴云霄, 李芹涛, 谢焕真, 汪自扬, 张飞. 玄武岩纤维活性粉末混凝土在冲击载荷下的力学行为及本构关系[J]. 材料导报, 2022, 36(19): 21050237-7.
[11] 商怀帅, 邵姝文, 袁守涛, 冯海暴. NPR钢筋与海工混凝土的粘结性能试验研究[J]. 材料导报, 2021, 35(z2): 228-235.
[12] 温俊霞, 余磊, 曹睿, 车洪艳, 王铁军, 董浩, 闫英杰. 回火处理对一种新型钴基合金表面结构和压缩力学性能的影响[J]. 材料导报, 2021, 35(Z1): 381-385.
[13] 黄健康, 刘玉龙, 刘光银, 杨茂鸿, 樊丁. 微纳米尺度单晶铜各向异性纳米力学分析[J]. 材料导报, 2021, 35(24): 24117-24121.
[14] 夏伟, 许金余, 聂良学, 王志航, 黄哲, 姚廒. 冲击荷载下纳米碳纤维混凝土的动态受压力学特性[J]. 材料导报, 2021, 35(22): 22063-22071.
[15] 徐仰涛, 马腾飞, 王永红. 钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律[J]. 材料导报, 2021, 35(22): 22104-22108.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed