1 School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China 2 Engineering Research Center of Complex Tracks Processing Technology and Equipment of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, China 3 Key Laboratory of Welding Robot and Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, Hunan, China
Abstract: Heterogeneous atom doping has been proved to be an effective strategy to improve the hydrogen evolution performance, as it can activate the inert basal plane of MoS2. However, most of the researches have so far focused only on single metal or non-metal atomic doping to MoS2. In this work, a novel Sn metal atom and P nonmetal atom co-doped MoS2 nanoflower (Sn, P-MoS2) was successfully prepared by a simple one-step hydrothermal method. The structure, morphology and chemical composition of the Sn, P-MoS2 were characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the results showed that Sn and P atoms were successfully doped and uniformly distributed in MoS2 lattice. Compared with pure MoS2 and Sn metal atom or P non-metal atom doped MoS2, the Sn, P-MoS2 nanoflowers exhibited a low overpotential of 277 mV at 10 mA/cm2 and a small Tafel slope of 50.2 mV/dec, sho-wing superior electrocatalytic performance for hydrogen evolution reaction in 0.5 mol/L H2SO4 solution. The excellent performance of the Sn, P-MoS2 can be attributed to the synergistic interaction between Sn and P, which promotes the formation of active sites at basal plane and reduces the free energy of hydrogen adsorption at active edges. This co-doping strategy of metal and non-metal atoms provides a viable route to develop MoS2-based catalysts for hydrogen evolution applications.
通讯作者:
* 何文远,湘潭大学机械工程学院材料系硕士研究生导师。2020年毕业于湘潭大学材料科学与工程专业后留校工作至今。主要从事微纳能源材料及其力-电化学行为方面的研究,先后在Chemical Engineering Journal、Journal of Colloid and Interface Science、ACS Applied Energy Materials、Journal of Alloys and Compounds等期刊发表SCI论文10余篇,授权国家发明专利4项。hewenyuan@xtu.edu.cn;郑学军,湘潭大学机械工程学院院长、博士研究生导师,教育部长江学者特聘教授,国家杰出青年基金获得者,湖南省芙蓉学者特聘教授。主要从事低维纳米材料及其敏感器件、能源存储与转换器件、半导体纳米结构及微纳光机电系统等方面的研究。已发表论文300余篇。zhengxuejun@xtu.edu.cn
1 Li X L, Wang X J, Zhao J, et al. Materials Reports, 2018, 32(7), 1057(in Chinese). 李旭力, 王晓静, 赵君, 等. 材料导报, 2018, 32(7), 1057. 2 Guo Y J, Li F, Guo D, et al. Materials Reports, 2020, 34(16), 16011(in Chinese). 郭亚杰, 李帆, 郭栋, 等. 材料导报, 2020, 34(16), 16011. 3 Rostrup-Nielsen J R. Catalysis Reviews, 2004, 46(3-4), 247. 4 Guo B W, Luo D, Zhou H J. Chemical Industry and Engineering Progress, 2021, 40(6), 2933(in Chinese). 郭博文, 罗聃, 周红军. 化工进展, 2021, 40(6), 2933. 5 Bolar S, Shit S, Murmu N C, et al. ACS Applied Materials Interfaces, 2021, 13(1), 765. 6 Gao G, Sun Q, Du A. The Journal of Physical Chemistry C, 2016, 120(30), 16761. 7 Zang Y, Niu S, Wu Y, et al. Nature Communications, 2019, 10(1), 1. 8 Guo T, Wang L, Sun S, et al. Chinese Chemical Letters, 2019, 30(6), 1253. 9 Pham V P, Yeom G Y. Advanced Materials, 2016, 28(41), 9024. 10 Xue J Y, Li F L, Zhao Z Y, et al. Inorganic Chemistry, 2019, 58(16), 11202. 11 Zhao M, Yang M, Huang W, et al. ChemCatChem, 2021, 13(9), 2138. 12 Wang C. International Journal of Electrochemical Science, 2019, 14, 11607. 13 Li M, Cai B, Tian R, et al. Chemical Engineering Journal, 2021, 409, 128158. 14 Yang H, Yuan M, Sun Z, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(22), 8348. 15 Liu Q, Xie L, Liu Z, et al. Chemical Communications, 2017, 53(92), 12446. 16 Liu H, Liu Z, Wang F, et al. Chemical Engineering Journal, 2020, 397, 125507. 17 Chen T, Zhang R, Ye B, et al. Nanotechnology, 2020, 31(12), 125402. 18 Xu X, Ge Y, Wang M, et al. ACS Applied Materials Interfaces, 2016, 8(28), 18036. 19 Sun X, Dai J, Guo Y, et al. Nanoscale, 2014, 6(14), 8359. 20 Wang R, Yang Y, Sun Z, et al. International Journal of Hydrogen Energy, 2022, 47(5), 2958. 21 Wang X, Zhang Y, Si H, et al. Journal of American Chemical Society, 2020, 142(9), 4298. 22 He W, Zheng X J, Peng J F, et al. Chemical Engineering Journal, 2020, 396, 125227. 23 Tan J, Zhang W, Shu Y, et al. Science Bulletin, 2021, 66(10), 1003. 24 Zhang J, Wang T, Liu P, et al. Energy & Environmental Science, 2016, 9(9), 2789. 25 Shi Z T, Kang W, Xu J, et al. Nano Energy, 2016, 22, 27. 26 Xu H, Cao J, Shan C, et al. Angewandte Chemie-international Edition, 2018, 130(28), 8790. 27 Kadam S R, Ghosh S, Bar-Ziv R, et al. Chemistry—a European Journal, 2020, 26(29), 6679. 28 Tran N Q, Bui V Q, Le H M, et al. Advanced Energy Materials, 2018, 8(15), 1702139. 29 Ahmad M, Ahmed E, Zhang Y, et al. Current Applied Physics, 2013, 13(4), 697. 30 Liu G, Qiu Y, Wang Z, et al. ACS Applied Materials & Interfaces, 2017, 9(43), 37750. 31 Niu S, Cai J, Wang G. Nano Research, 2021, 14(6), 1985. 32 Zheng Z, Yu L, Gao M, et al. Nature Communications, 2020, 11(1), 1. 33 Lu X, Zhao C. Nature Communications, 2015, 6, 6616. 34 Huang Z, Luo W, Ma L, et al. Angewandte Chemie-International Edition, 2015, 54(50), 1518. 35 Gong M, Zhou W, Tsai M C, et al. Nature Communications, 2014, 5, 4695. 36 Zhu Q, Shao M, Yu S H, et al. ACS Applied Energy Materials, 2018, 2(1), 644.