Effects of HEC Dispersant and Fiber Content on Compression-sensitivity of Short Carbon Fiber Cement-based Materials
FANG Siyi1, BA Mingfang1,2,*, XU Haofeng1, ZHANG Chenjian1, XIE Jialei1, WANG Zhihao1
1 School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, Zhejiang, China 2 Collaborative Innovation Center of Coastal Urban Rail Transit, Ningbo University, Ningbo 315211, Zhejiang, China
Abstract: In order to improve the compression-sensitivity of CFRCC, the effect of hydroxyethyl cellulose (HEC) on the dispersion characteristics of short carbon fibers in CFRCC was studied, the influence of different HEC content and short carbon fiber content on CFRCC compression-sensitivity was explored by the sensitivity coefficient method, and the pore structure characteristics of the corresponding CFRCC were analyzed according to the electrochemical impedance method and the evaporation water content method, and then the dispersion status of the short carbon fibers in the CFRCC matrix and the interface characteristics between the fibers and the matrix were deeply observed by SEM testing technology. The results show that when the dosage HEC dispersant in CFRCC is 0.4% to 0.6% of the total mass of the cementitious material, it can make CFRCC exert better compression-sensitivity under the condition of enduring its good mechanical properties. When the water-binder ratio of the CFRCC matrix is 0.35, short carbon fiber has the best dispersion effect. Under the same water-binder ratio, with the increase of short carbon fiber content, the flexural strength of CFRCC increases to varying degrees, while the compressive strength decreased gradually. When the volume of short carbon fibers is 0.2%, short carbon fibers do not overlap and cluster with each other in the CFRCC matrix. Considering the compression-sensitivity and mechanical properties, the suitable content range of short carbon fibers in CFRCC is 0.2% to 0.25%.
1 Wang Z J, Li K Z, Wang C. Journal of Zhengzhou University (Engineering Science), 2011, 32(1), 47 (in Chinese). 王振军, 李克智, 王闯. 郑州大学学报(工学版), 2011, 32(1), 47. 2 Wang C, Li K Z, Li H J, et al. Jorunal of Functional Materials, 2007(10), 1641(in Chinese). 王闯, 李克智, 李贺军, 等. 功能材料, 2007(10), 1641. 3 Zhu W Y. Research on pressure sensitivity performance of intelligent concrete for vehicle overload early warning. Master's Thesis, Chongqing Jiaotong University, China, 2016 (in Chinese). 祝文允. 车辆超载预警智能混凝土压敏性能研究. 硕士学位论文, 重庆交通大学, 2016. 4 Li G Y, Wang P M, Zhao X H. Cement and Concrete Composites, 2006, 29(5), 377. 5 Du X Q, Liu Z L. Concrete, 2018(4), 91. (in Chinese). 杜向琴, 刘志龙. 混凝土, 2018(4), 91. 6 Liu X Y, Zhang Y M, Zuo J Q. Fly Ash Comprehensive Utilization, 2017(2), 3(in Chinese). 刘小艳, 张玉梅, 左俊卿. 粉煤灰综合利用, 2017(2), 3. 7 Bai J J. China High-tech, 2021(10), 65(in Chinese). 白娇娇. 中国高新科技, 2021(10), 65. 8 Mao Q, Zhao B Y, Shen D R, et al. Acta Materiae Compositae Sinica, 1996(4), 10(in Chinese). 毛起, 赵斌元, 沈大荣, 等. 复合材料学报, 1996(4), 10. 9 Ge Y C, Liu S H. Bulletin of the Chinese Ceramic Society, 2019, 38(8), 2442(in Chinese). 葛宇川, 刘数华. 硅酸盐通报, 2019, 38(8), 2442. 10 Wen S, Chung D D L. Journal of Materials Science, 2004, 39(13), 4103. 11 Wang M M, Xu X W, Liu Q C. Bulletin of the Chinese Ceramic Society, 2011, 30(3), 524(in Chinese). 王明明, 徐协文, 刘其城. 硅酸盐通报, 2011, 30(3), 524. 12 Wei J Q. Journal of Water Resources and Architectural Engineering, 2015, 13(2), 148(in Chinese). 魏建强. 水利与建筑工程学报, 2015, 13(2), 148. 13 Wu Y C, Guo R X, Xia H T, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(3), 731(in Chinese). 吴一晨, 郭荣鑫, 夏海廷, 等. 硅酸盐通报, 2021, 40(3), 731. 14 Wang Z J, Gao J, Ai T, et al. Construction and Building Materials, 2014, 68, 26. 15 Zhu P, Deng G H, Shao X D. Materials Reports, 2018, 32(1), 149(in Chinese). 朱平, 邓广辉, 邵旭东. 材料导报, 2018, 32(1), 149. 16 Li D. Research on fiber dispersion quantification and optimization in fiber-reinforced cementitious materials. Master's Thesis, Harbin Institute of Technology, China, 2019(in Chinese). 李冬. 纤维增强水泥基材料中的纤维分散量化及优化研究. 硕士学位论文, 哈尔滨工业大学, 2019. 17 Zhao J, Dang S Y. China Concrete and Cement Products, 2019(6), 49(in Chinese). 赵洁, 党松洋. 混凝土与水泥制品, 2019(6), 49. 18 Zhu H B, Zhou H Y, Gou H X. Construction and Building Materials, 2021, 266(Pt A), 120891. 19 Han B G, Zhang L Q, Zhang C Y, et al. Construction and Building Materials, 2016, 125, 479. 20 Lu Z Y, Asad H, Sun G X, et al. Cement and Concrete Composites, 2018, 87, 220. 21 Han J H, Wang D B, Zhang P. Nanotechnology Reviews, 2020, 9(1), 445. 22 Jin C F, Yan S, Zhang S Y. China Concrete and Cement Products, 2022(3), 66(in Chinese). 金春福, 阎石, 张世洋. 混凝土与水泥制品, 2022(3), 66. 23 Li B L, Wang C, Ma T, et al. Journal of Dalian Jiaotong University, 2017, 38(4), 4(in Chinese). 李炳良, 王闯, 马婷, 等. 大连交通大学学报, 2017, 38(4), 4. 24 Wang C, Li K Z, Li H J. Fine Chemicals, 2007(1), 1(in Chinese). 王闯, 李克智, 李贺军. 精细化工, 2007(1), 1. 25 Cheng J Q, Wang W G, Han J. Journal of Liaoning Shihua University, 2021, 41(3), 34(in Chinese). 程健强, 王文广, 韩杰. 辽宁石油化工大学学报, 2021, 41(3), 34. 26 Dang J L, Niu J G, Tang H L, et al. China Synthetic Fiber Industry, 2021, 44(4), 55(in Chinese). 党军亮, 牛建刚, 唐好令, 等. 合成纤维工业, 2021, 44(4), 55. 27 Chen P W, Fu X, Chung D D L. Smart Material Structure, 1993, 2 (1), 22. 28 Zhang H. Study on dispersion and agility characteristics of short-cut carbon fiber in CFRC. Master's Thesis, Wuhan University of Technology, China, 2004. (in Chinese). 张晖. CFRC中短切碳纤维的分散性及其机敏特性研究. 硕士学位论文, 武汉理工大学, 2004. 29 Wu L P, Yan P Y. Journal of the Chinese Ceramic Society, 2012, 40(5), 651(in Chinese). 吴立朋, 阎培渝. 硅酸盐学报, 2012, 40(5), 651. 30 Sun M Q, Zhang H, Li Z Q, et al. China Concrete and Cement Pro-ducts, 2004(5), 38(in Chinese). 孙明清, 张晖, 李卓球, 等. 混凝土与水泥制品, 2004(5), 38. 31 Wang C, Li K Z, Li H J, et al. Materials Science & Engineering A, 2007, 487(1), 52. 32 Cao H L, Huang Y D, Zhang Z Q, et al. Journal of Harbin Institute of Technology, 2004(2), 168.