Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 22020118-7    https://doi.org/10.11896/cldb.22020118
  无机非金属及其复合材料 |
Sn、P共掺杂MoS2纳米花的制备及电催化析氢性能研究
周靓1, 何文远1,2,3,*, 陈隆源1, 朱红伟1, 陈丽娟1, 凌辉1, 郑学军1,2,3,*
1 湘潭大学机械工程学院,湖南 湘潭 411105
2 湘潭大学教育部复杂轨迹加工技术与装备工程研究中心,湖南 湘潭 411105
3 湘潭大学湖南省焊接机器人及应用技术重点实验室,湖南 湘潭 411105
Preparation of Sn, P Co-doped MoS2 Nanoflowers and Their Electrocatalytic Hydrogen Evolution Performance
ZHOU Liang1, HE Wenyuan1,2,3,*, CHEN Longyuan1, ZHU Hongwei1, CHEN Lijuan1, LING Hui1, ZHENG Xuejun1,2,3,*
1 School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
2 Engineering Research Center of Complex Tracks Processing Technology and Equipment of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, China
3 Key Laboratory of Welding Robot and Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, Hunan, China
下载:  全 文 ( PDF ) ( 17252KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 掺杂被证实是激活MoS2面内析氢活性,从而提高其析氢性能的有效手段,但是大多数研究都局限于单一的金属或非金属原子掺杂。本工作通过一步水热法成功制备出一种新型的Sn、P金属-非金属原子共掺杂的MoS2纳米花(Sn,P-MoS2)。通过XRD、Raman、XPS、SEM和EDS对材料的结构、形貌和成分进行表征,结果表明Sn和P原子成功共同掺杂进入MoS2晶格且均匀分布。与纯MoS2和单一的Sn金属原子或P非金属原子掺杂MoS2相比,Sn,P-MoS2纳米花在0.5 mol/L H2SO4溶液中展现出更优异的电催化析氢性能:在10 mA/cm2的电流密度下过电位仅为277 mV,塔菲尔斜率为50.2 mV/dec。Sn,P-MoS2纳米花优异的析氢性能可归因于Sn、P原子之间存在协同作用,促进了面内析氢活性位点的形成,同时减小了边缘活性位点的氢吸附自由能。这种金属和非金属原子共掺杂策略为MoS2基析氢电催化剂的广泛应用提供了一条可行的途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周靓
何文远
陈隆源
朱红伟
陈丽娟
凌辉
郑学军
关键词:  Sn、P共掺杂二硫化钼  电催化析氢  一步水热合成  活性位点    
Abstract: Heterogeneous atom doping has been proved to be an effective strategy to improve the hydrogen evolution performance, as it can activate the inert basal plane of MoS2. However, most of the researches have so far focused only on single metal or non-metal atomic doping to MoS2. In this work, a novel Sn metal atom and P nonmetal atom co-doped MoS2 nanoflower (Sn, P-MoS2) was successfully prepared by a simple one-step hydrothermal method. The structure, morphology and chemical composition of the Sn, P-MoS2 were characterized by X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the results showed that Sn and P atoms were successfully doped and uniformly distributed in MoS2 lattice. Compared with pure MoS2 and Sn metal atom or P non-metal atom doped MoS2, the Sn, P-MoS2 nanoflowers exhibited a low overpotential of 277 mV at 10 mA/cm2 and a small Tafel slope of 50.2 mV/dec, sho-wing superior electrocatalytic performance for hydrogen evolution reaction in 0.5 mol/L H2SO4 solution. The excellent performance of the Sn, P-MoS2 can be attributed to the synergistic interaction between Sn and P, which promotes the formation of active sites at basal plane and reduces the free energy of hydrogen adsorption at active edges. This co-doping strategy of metal and non-metal atoms provides a viable route to develop MoS2-based catalysts for hydrogen evolution applications.
Key words:  Sn,P co-doped MoS2    electrocatalytic hydrogen evolution    one-step hydrothermal synthesis    active sites
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  O643  
基金资助: 国家自然科学基金项目 (11832016;51775471);湖南创新型省份建设专项重大标志性创新示范工程项目(2019XK2303);长沙株洲湘潭标志性工程技术项目(2020GK2014);合肥通用机械研究院有限公司项目(20213ZK)
通讯作者:  * 何文远,湘潭大学机械工程学院材料系硕士研究生导师。2020年毕业于湘潭大学材料科学与工程专业后留校工作至今。主要从事微纳能源材料及其力-电化学行为方面的研究,先后在Chemical Engineering Journal、Journal of Colloid and Interface Science、ACS Applied Energy Materials、Journal of Alloys and Compounds等期刊发表SCI论文10余篇,授权国家发明专利4项。hewenyuan@xtu.edu.cn;郑学军,湘潭大学机械工程学院院长、博士研究生导师,教育部长江学者特聘教授,国家杰出青年基金获得者,湖南省芙蓉学者特聘教授。主要从事低维纳米材料及其敏感器件、能源存储与转换器件、半导体纳米结构及微纳光机电系统等方面的研究。已发表论文300余篇。zhengxuejun@xtu.edu.cn   
作者简介:  周靓,2019年6月于湘潭大学获得学士学位,现为湘潭大学机械工程学院硕士研究生,在郑学军教授的指导下进行研究。目前主要从事电催化水分解电极材料的研究。
引用本文:    
周靓, 何文远, 陈隆源, 朱红伟, 陈丽娟, 凌辉, 郑学军. Sn、P共掺杂MoS2纳米花的制备及电催化析氢性能研究[J]. 材料导报, 2023, 37(15): 22020118-7.
ZHOU Liang, HE Wenyuan, CHEN Longyuan, ZHU Hongwei, CHEN Lijuan, LING Hui, ZHENG Xuejun. Preparation of Sn, P Co-doped MoS2 Nanoflowers and Their Electrocatalytic Hydrogen Evolution Performance. Materials Reports, 2023, 37(15): 22020118-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020118  或          http://www.mater-rep.com/CN/Y2023/V37/I15/22020118
1 Li X L, Wang X J, Zhao J, et al. Materials Reports, 2018, 32(7), 1057(in Chinese).
李旭力, 王晓静, 赵君, 等. 材料导报, 2018, 32(7), 1057.
2 Guo Y J, Li F, Guo D, et al. Materials Reports, 2020, 34(16), 16011(in Chinese).
郭亚杰, 李帆, 郭栋, 等. 材料导报, 2020, 34(16), 16011.
3 Rostrup-Nielsen J R. Catalysis Reviews, 2004, 46(3-4), 247.
4 Guo B W, Luo D, Zhou H J. Chemical Industry and Engineering Progress, 2021, 40(6), 2933(in Chinese).
郭博文, 罗聃, 周红军. 化工进展, 2021, 40(6), 2933.
5 Bolar S, Shit S, Murmu N C, et al. ACS Applied Materials Interfaces, 2021, 13(1), 765.
6 Gao G, Sun Q, Du A. The Journal of Physical Chemistry C, 2016, 120(30), 16761.
7 Zang Y, Niu S, Wu Y, et al. Nature Communications, 2019, 10(1), 1.
8 Guo T, Wang L, Sun S, et al. Chinese Chemical Letters, 2019, 30(6), 1253.
9 Pham V P, Yeom G Y. Advanced Materials, 2016, 28(41), 9024.
10 Xue J Y, Li F L, Zhao Z Y, et al. Inorganic Chemistry, 2019, 58(16), 11202.
11 Zhao M, Yang M, Huang W, et al. ChemCatChem, 2021, 13(9), 2138.
12 Wang C. International Journal of Electrochemical Science, 2019, 14, 11607.
13 Li M, Cai B, Tian R, et al. Chemical Engineering Journal, 2021, 409, 128158.
14 Yang H, Yuan M, Sun Z, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(22), 8348.
15 Liu Q, Xie L, Liu Z, et al. Chemical Communications, 2017, 53(92), 12446.
16 Liu H, Liu Z, Wang F, et al. Chemical Engineering Journal, 2020, 397, 125507.
17 Chen T, Zhang R, Ye B, et al. Nanotechnology, 2020, 31(12), 125402.
18 Xu X, Ge Y, Wang M, et al. ACS Applied Materials Interfaces, 2016, 8(28), 18036.
19 Sun X, Dai J, Guo Y, et al. Nanoscale, 2014, 6(14), 8359.
20 Wang R, Yang Y, Sun Z, et al. International Journal of Hydrogen Energy, 2022, 47(5), 2958.
21 Wang X, Zhang Y, Si H, et al. Journal of American Chemical Society, 2020, 142(9), 4298.
22 He W, Zheng X J, Peng J F, et al. Chemical Engineering Journal, 2020, 396, 125227.
23 Tan J, Zhang W, Shu Y, et al. Science Bulletin, 2021, 66(10), 1003.
24 Zhang J, Wang T, Liu P, et al. Energy & Environmental Science, 2016, 9(9), 2789.
25 Shi Z T, Kang W, Xu J, et al. Nano Energy, 2016, 22, 27.
26 Xu H, Cao J, Shan C, et al. Angewandte Chemie-international Edition, 2018, 130(28), 8790.
27 Kadam S R, Ghosh S, Bar-Ziv R, et al. Chemistry—a European Journal, 2020, 26(29), 6679.
28 Tran N Q, Bui V Q, Le H M, et al. Advanced Energy Materials, 2018, 8(15), 1702139.
29 Ahmad M, Ahmed E, Zhang Y, et al. Current Applied Physics, 2013, 13(4), 697.
30 Liu G, Qiu Y, Wang Z, et al. ACS Applied Materials & Interfaces, 2017, 9(43), 37750.
31 Niu S, Cai J, Wang G. Nano Research, 2021, 14(6), 1985.
32 Zheng Z, Yu L, Gao M, et al. Nature Communications, 2020, 11(1), 1.
33 Lu X, Zhao C. Nature Communications, 2015, 6, 6616.
34 Huang Z, Luo W, Ma L, et al. Angewandte Chemie-International Edition, 2015, 54(50), 1518.
35 Gong M, Zhou W, Tsai M C, et al. Nature Communications, 2014, 5, 4695.
36 Zhu Q, Shao M, Yu S H, et al. ACS Applied Energy Materials, 2018, 2(1), 644.
[1] 王思弘, 宋钫. 金属氧化物电催化析氧机理的研究进展[J]. 材料导报, 2022, 36(23): 21030163-13.
[2] 初燕芳, 张琳, 谢彬, 严能, 何俊杰, 李靖. 高能球磨破碎铁掺杂δ-MnO2对其电容提升的机理研究[J]. 材料导报, 2022, 36(20): 22010246-7.
[3] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed