Please wait a minute...
材料导报  2021, Vol. 35 Issue (2): 2161-2165    https://doi.org/10.11896/cldb.19120232
  高分子与聚合物基复合材料 |
硬段含量对聚酯型温敏聚氨酯弹性体性能的影响
李廷廷, 刘锦春
青岛科技大学高分子科学与工程学院,橡塑材料与工程教育部重点实验室,青岛 266042
Effect of Hard Segment Content on Properties of Polyester Thermosensitive Polyurethane Elastomer
LI Tingting, LIU Jinchun
Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
下载:  全 文 ( PDF ) ( 4127KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选用二苯基甲烷二异氰酸酯(MDI)体系,采用预聚体法合成不同硬段含量的温敏聚氨酯弹性体(CPU)。研究了硬段含量对聚氨酯弹性体常温及变温力学性能、热性能、动态性能以及形变温敏性能的影响。结果表明:当硬段含量为62%时,材料的拉伸强度、撕裂强度最高,扯断伸长率最低;当硬段含量为63.5%时,硬度、玻璃化转变温度最高;拉伸强度随温度的升高而降低,扯断伸长率随温度的升高先增加后减小,且在玻璃化转变温度附近达到最大。硬段含量为62%时,CPU的综合性能较为优异,且具有典型的形变温敏性能,随着外界力的变化,聚氨酯弹性体的形变固定率变化并不是特别明显,而形变回复率因此下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李廷廷
刘锦春
关键词:  聚酯型  聚氨酯弹性体  硬段含量  形变温敏    
Abstract: Diphenylmethane diisocyanate (MDI) system was used to synthesize temperature-sensitive polyurethane elastomers (CPU) with different hard segment contents by using the prepolymer method.The hard segment content was studied for normal temperature and temperature-varying mechanical properties of polyurethane elastomers. The effects of properties, dynamic properties, and temperature-sensitive properties of deformation. The results show that when the hard segment content is 62%, the tensile strength and tear strength of the material are the highest, and the elongation at break is the lowest; when the hard segment content is 63.5%, the hardness and glass transition temperature are the hig-hest; the tensile strength decreases with increasing temperature, and the elongation at break first increases and then decreases with increasing temperature, and reaches the maximum near the glass transition temperature. When the hard segment content is 62%, the overall performance of the CPU is excellent, and it has the typical deformation temperature sensitivity performance. With the change of external force, the change of the deformation and fixation rate of the polyurethane elastomer is not particularly obvious, which indicates that the cross-linking network of the CPU has a stable deformation and fixation rate. As the external force increases, the degree of damage to the cross-linking point becomes greater. Therefore, the deformation recovery rate decreases accordingly.
Key words:  polyester type    polyurethane elastomer    hard segment content    deformation temperature sensitivity
               出版日期:  2021-01-25      发布日期:  2021-01-28
ZTFLH:  TB324  
基金资助: 山东省重点研发计划项目(2019GGX102044);山东省重大科技创新工程项目(2019JZZY020204)
通讯作者:  liujinchun2001@163.com   
作者简介:  李廷廷,青岛科技大学硕士研究生,主要从事聚氨酯的合成与应用研究。
刘锦春,青岛科技大学,副教授。长期从事聚氨酯弹性体、泡沫材料的合成、加工及应用,橡胶加工新技术方面的研究和开发工作。作为项目组的主要成员曾参与了国家“八五”重点科技攻关项目研究及国家自然科学基金。作为项目负责人主持完成一项教育厅科研项目及多项企业合作课题,发表论文30余篇,申请发明专利10余项。
引用本文:    
李廷廷, 刘锦春. 硬段含量对聚酯型温敏聚氨酯弹性体性能的影响[J]. 材料导报, 2021, 35(2): 2161-2165.
LI Tingting, LIU Jinchun. Effect of Hard Segment Content on Properties of Polyester Thermosensitive Polyurethane Elastomer. Materials Reports, 2021, 35(2): 2161-2165.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120232  或          http://www.mater-rep.com/CN/Y2021/V35/I2/2161
1 Liu T Y, Huang R, Qi X D,et al. Polymer, 2017, 114, 28.
2 Lin T F, Tang Z H, Guo B C. ACS Applied Materials & Interfaces, 2014, 6, 21060.
3 Anthamatten M, Roddecha S, Li J H. Macromolecules, 2013, 46, 4230.
4 Xie T.Polymer, 2011, 52, 4985.
5 Song G B, Ma N, Li H N.Engineering Structures, 2006, 28, 1266.
6 Sydney J, Minne S. Polymer-Plastics Technology and Engineering, 2007, 46 (4), 353.
7 Gu S L, Sadhan J.Polymers-Basel, 2014, 6, 1008.
8 Yang X F. Study on star shape memory polyurethane. Master's Thesis, Southwest Jiaotong University, China, 2014(in Chinese).
杨希凤. 星型形状记忆聚氨酯的研究. 硕士学位论文, 西南交通大学, 2014.
9 Zhang H Y. Study on shape memory waterborne polyurethane. Master's Thesis, East China University of Science and Technology, China, 2011(in Chinese).
张海燕. 形状记忆水性聚氨酯的研究. 硕士学位论文, 华东理工大学, 2011.
10 Meng H, Li G Q. Polymer, 2013, 54, 2199.
11 Li F K, Zhu W K, Zhang X, et al. CHinese Journal of Polymer Science, 1998, 16, 155.
12 Zhang C S, Ni Q Q. Composite Structures, 2007, 78, 153.
13 Leng J S, Lan X, Liu Y J, et al. Progress in Materials Science, 2011, 56, 1077.
14 Feldkamp D M, Rousseau I A.Macromolecular Materials and Enginee-ring, 2010, 295, 726.
15 Yakacki C M, Ortega A M, Frick C P,et al. Macromolecular Materials and Engineering, 2012, 297, 1160.
16 Rodriguez E D, Luo X F, Mather P T.ACS Applied Materials & Interfaces, 2011, 3, 152.
17 Morton M, Helminiak T E, Bueche F.Polymer Science, 1962, 57, 471.
18 Ping P, Wang W S, Chen X S, et al. Biomacromolecules, 2005, 6, 587.
[1] 文华银, 张文焕, 贺婉, 刘涛, 罗世凯, 周元林. 超临界CO2制备三元乙丙橡胶微孔泡沫[J]. 材料导报, 2021, 35(2): 2166-2170.
[2] 刘鑫, 彭泽川, 潘晨豪, 胡鑫, 万朝均, 杨宏宇. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22): 22078-22082.
[3] 孙鹏飞, 黄舰, 吕平, 张锐, 方志强. 聚脲涂覆建筑结构抗爆性能研究进展[J]. 材料导报, 2020, 34(Z2): 623-630.
[4] 李少杰, 闫军, 杜仕国, 鲁彦玲, 蔡军锋. 聚脲弹性体微相分离研究及主要进展[J]. 材料导报, 2020, 34(21): 21205-21210.
[5] 张飞, 周玉惠, 张恒, 何力, 龚维. β-环糊精对长支链化聚乳酸复合材料发泡质量及力学性能的影响[J]. 材料导报, 2020, 34(16): 16155-16160.
[6] 马文梅, 黄楠, 熊开琴. 基于共价固定高密度透明质酸构建具有抗菌抗凝血双功能的表面[J]. 材料导报, 2020, 34(8): 8165-8171.
[7] 张恒, 周玉惠, 张飞, 龚维, 何力. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(4): 4148-4152.
[8] 王怀基, 董海青. 还原响应的白蛋白纳米颗粒负载甲氨蝶呤用于抗肿瘤治疗[J]. 材料导报, 2019, 33(Z2): 547-552.
[9] 赵西坡, 胡欢, 熊娟, 王鑫, 余晓磊, 彭少贤. 弹性体共混改性聚乳酸(PLA)高韧性共混物研究进展[J]. 材料导报, 2019, 33(Z2): 590-598.
[10] 郭华超, 邓伟, 杨波, 黄国家, 李爽, 文芳. 聚偏氟乙烯/膨胀石墨高介电复合材料的制备及性能[J]. 材料导报, 2019, 33(20): 3520-3523.
[11] 谢全灵,邵文尧,马寒骏,刘晨然,洪专. 基于二维石墨烯纳米材料优化高分子分离膜的研究进展[J]. 材料导报, 2019, 33(17): 2958-2965.
[12] 皮茂, 张守村, 魏杰, 李伟达. 采用高内相乳液模板法制备葡萄糖基/麦芽糖基大孔材料及其形貌表征[J]. 材料导报, 2019, 33(16): 2804-2807.
[13] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[14] 王忠辉, 辛勇. 高分子链运动对氧气扩散行为的影响[J]. 材料导报, 2019, 33(8): 1293-1297.
[15] 陈道鸽, 熊向源, 龚妍春, 李资玲, 李玉萍. 含Pluronic高分子纳米粒子在药物释放体系的研究现状[J]. 材料导报, 2019, 33(3): 517-521.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed