Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2958-2965    https://doi.org/10.11896/cldb.18070027
  高分子与聚合物基复合材料 |
基于二维石墨烯纳米材料优化高分子分离膜的研究进展
谢全灵1,邵文尧2,马寒骏1,2,刘晨然1,2,洪专1,3
1 自然资源部第三海洋研究所,厦门 361005
2 厦门大学化学化工学院,厦门 361005
3 福建省海洋生物资源开发利用协同创新中心,厦门 361005
Research Progress in Optimizations of Polymer-matrix Membranes Using Two-dimensional Graphene-based Nanomaterials
XIE Quanling1, SHAO Wenyao2, MA Hanjun1,2, LIU Chenran1,2,HONG Zhuan1,3
1 Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005
2 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005
3 Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005
下载:  全 文 ( PDF ) ( 8778KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高分子分离膜的渗透性与选择性之间存在此长彼消的Trade-off效应,且其抗污染性能、化学稳定性能也亟待提升。有机-无机杂化膜综合了有机高分子材料和无机材料的优点。近年来,纳米材料的快速发展对传统高分子膜材料具有重要的推动作用,尤其是基于二维石墨烯纳米材料开发的新型复合分离膜成为备受关注的研究热点。
   然而,石墨烯化学稳定性高,其表面呈惰性状态,与其他介质的相互作用较弱,且石墨烯片层之间存在较强的范德华力,易聚集而难溶于水及膜溶剂,严重阻碍了其在高分子分离膜材料中的应用。氧化石墨烯(GO)在石墨烯的表面和边缘引入了大量的含氧极性基团,有助于摆脱片层间强大的π-π堆积相互作用力,因此,GO在水及膜溶剂中具有良好的分散性能;同时,大量的含氧基团也为设计与制备改性石墨烯提供了丰富的反应位点;此外,GO还具有可规模化制备、成本较低的优点,使得GO在高分子分离膜材料中的应用备受青睐。
   针对聚偏氟乙烯、聚砜与聚醚砜等常用膜材料疏水性强、易污染的缺点,将它们分别与GO、改性GO或复合纳米材料等共混,通过浸没沉淀相转化法制备混合基质膜,可以有效改善混合基质膜的亲水性、膜孔结构、膜表面粗糙度、荷电性能等,从而提升混合基质膜的渗透性能与抗污染性能,甚至赋予其抑菌等新功能。在聚酰胺复合膜的超薄分离层或多孔支撑层中引入适量的GO或改性GO,通过增强超薄分离层的亲水性能、荷电性能以及优化超薄分离层的结构,从而提升纳米复合膜的选择渗透性能、抗污染性能以及耐氯性能。此外,利用GO的静电、氢键、范德华力、π-π等非共价键相互作用力,或者利用GO活性位点与交联剂反应实现共价键连接,可以通过层层组装法制备水平取向、高效堆叠的高通量GO层状膜。
   本文归纳了基于物理共混、界面聚合、层层组装等常用制膜方法,将二维石墨烯纳米材料填充、交联、吸附、沉积,从而负载或包裹在高分子膜基质中,实现改善与优化高分子分离膜结构与性能的应用研究进展,并对二维石墨烯纳米材料在高分子分离膜的工业化应用中所面临的挑战和前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢全灵
邵文尧
马寒骏
刘晨然
洪专
关键词:  石墨烯  氧化石墨烯  高分子膜  膜分离    
Abstract: To date, polymer membranes still encounter several challenges including the trade-off effect between permeability and selectivity, low resis-tance to fouling and chemical stability. Organic-inorganic hybrid membranes can make use of the advantages of organic materials and inorganic materials. In recent years, the rapid development of nanomaterials plays an important role in promoting the development of new composite membranes. Especially, the application of two-dimensional graphene nanomaterials has attracted more and more attentions.
However, graphene has high chemical stability, inert surface, weak interaction with other media, and strong van der Waals force between graphene nanosheets, which is easy to aggregate and difficult to disperse in water and solvents, seriously hindering its application in polymer membrane materials. Graphene oxide (GO) introduces a large number of oxygen-containing polar groups on its surface or edge, which alleviates the strong interaction between nanosheets. Therefore, GO demonstrates good dispersibility in water and polar solvents. A large number of oxygen-containing groups also provide rich reaction sites for preparing modified graphene. In addition, GO has the advantages of large-scale production and low cost, making GO widely used in polymer membrane materials.
Popular polymer membrane materials such as polyvinylidene fluoride, polysulfone and polyethersulfone were individually blended with GO, modified GO, or composite nanomaterials to prepare mixed matrix membranes via immersion precipitation phase inversion. Because the hydrophilicity, pore structure and surface roughness were improved effectively, the mixed matrix membranes showed the enhanced permeability and antifouling property, and even presented new functions such as antibacterial. An appropriate amount of GO or modified GO was introduced into the ultrathin active layer or porous sublayer of polyamide thin-film composite membranes. The permeaselectivity, antifouling and chlorine resistance of the nanocomposite membranes were improved due to the enhanced hydrophilicity and charge property of active layer and the optimal structure of active layer. In addition, high-flux GO laminated membranes can be fabricated by layer-by-layer assembly using non-covalent bond interactions such as electrostatic, hydrogen bonding, van der Waals force, or covalent bonding between GO active sites and crosslinking agent.
This review offers the research progress with respect to the application of two-dimensional graphene nanomaterials to improve the structure and properties of polymer membranes based on the methods of physical blending, interfacial polymerization and layer-by-layer assembly. In addition, the challenges and prospects of industrial applications of two-dimensional graphene-based nanomaterials in polymer membranes are prospected.
Key words:  graphene    graphene oxide    polymer-matrix membrane    membrane separation
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  O631  
  TB324  
  TQ316.6  
基金资助: 厦门市产学研协同创新及科技合作项目(3502Z20172008);海洋三所基本科研业务费专项资金(2016036);厦门海洋高技术产业基地创业创新共享服务平台项目(16PFW008SF15);海洋中试技术研发与检测公共服务平台建设(Bhsfs009);厦门大学校长基金(20720170027)
作者简介:  谢全灵,男,博士,高级工程师,研究方向包括膜分离技术与膜材料研发,天然产物分离纯化技术研究,水产加工副产物高值化利用与成果转化技术研究等。承担或作为技术骨干参与各类科研项目10余项;申请国家发明专利7项,获授权4 项;在国内外期刊上发表论文20余篇;获得中国海洋工程科学技术奖二等奖1项,国家海洋局海洋创新成果二等奖1项。
邵文尧,厦门大学化学化工学院工程师。主要从事生化分离研究工作,包括膜材料的制备与应用、泡沫分离技术。近年来,主持多项生化分离领域的项目,包括国家基金、福建省青年研究项目、厦门市科技计划项目等,在生化分离领域发表论文多篇。
引用本文:    
谢全灵,邵文尧,马寒骏,刘晨然,洪专. 基于二维石墨烯纳米材料优化高分子分离膜的研究进展[J]. 材料导报, 2019, 33(17): 2958-2965.
XIE Quanling, SHAO Wenyao, MA Hanjun, LIU Chenran,HONG Zhuan. Research Progress in Optimizations of Polymer-matrix Membranes Using Two-dimensional Graphene-based Nanomaterials. Materials Reports, 2019, 33(17): 2958-2965.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070027  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2958
1 Daer S, Kharraz J, Giwa A, et al. <i>Desalination</i>, 2015,367,37.<br />
2 Lau W J, Gray S, Matsuura T, et al.<i>Water Research</i>, 2015,80,306.<br />
3 Goh P S,Ismail A F. <i>Journal of Chemical Technology & Biotechnology</i>, 2015,90(6),971.<br />
4 Goh P S,Ismail A F.<i>Desalination</i>, 2015,356,115.<br />
5 Yin J,Deng B L.<i>Journal of Membrane Science</i>, 2015,479,256.<br />
6 Li R Y, Zhang L B,Wang P. <i>Nanoscale</i>, 2015,7(41),17167.<br />
7 Salim W,Ho W S W. <i>Current Opinion in Chemical Engineering</i>, 2015,8,76.<br />
8 Wang X D, Wang Z N, Gao C J.<i>Chinese Journal of Applied Chemistry</i>, 2014,31(2),123(in Chinese).<br />
王熙大, 王志宁, 高从堦. 应用化学, 2014,31(2),123.<br />
9 Dong H, Zhang L, Chen H L, et al.<i>Progress in Chemistry</i>, 2014,26(12),2007(in Chinese).<br />
董航, 张林, 陈欢林, 等. 化学进展, 2014,26(12),2007.<br />
10 Compton O C,Nguyen S T. <i>Small</i>, 2010,6(6),711.<br />
11 Paredes J I, Villar-Rodil S, Martinez-Alonso A, et al. <i>Langmuir</i>, 2008,24(19),10560.<br />
12 Deng H, Sun P Z, Zhang Y J, et al.<i>Chinese Science Bulletin</i>, 2015,60(33),3196(in Chinese).<br />
邓会, 孙鹏展, 张迎九, 等. 科学通报, 2015,60(33),3196.<br />
13 Wang Z H, Yu H R, Xia J F, et al.<i>Desalination</i>, 2012,299,50.<br />
14 Chang X J, Wang Z X, Quan S, et al. <i>Applied Surface Science</i>, 2014,316,537.<br />
15 Xia S J,Ni M Z. <i>Journal of Membrane Science</i>, 2015,473,54.<br />
16 Zhao C, Xu X, Chen J, et al.<i>Journal of Environmental Chemical Engineering</i>, 2013,1(3),349.<br />
17 Zhao C Q, Xu X C, Chen J, et al.<i>Desalination</i>, 2014,334(1),17.<br />
18 Ganesh B M, Isloor A M,Ismail A F. <i>Desalination</i>, 2013,313,199.<br />
19 Lee J, Chae H R, Won Y J, et al.<i>Journal of Membrane Science</i>, 2013,448,223.<br />
20 Kumar M, McGlade D, Ulbricht M, et al.<i>RSC Advances</i>, 2015,5(63),51208.<br />
21 Zinadini S, Zinatizadeh A A, Rahimi M, et al. <i>Journal of Membrane Science</i>, 2014,453,292.<br />
22 Jin F M, Lv W, Zhang C, et al. <i>RSC Advances</i>, 2013,3(44),21394.<br />
23 Kim F, Cote L J,Huang J. <i>Advanced Materials</i>, 2010,22(17),1954.<br />
24 Cote L J, Kim J, Tung V C, et al.<i>Pure and Applied Chemistry</i>, 2011,83(1),95.<br />
25 Hung W S, An Q F, De Guzman M, et al.<i>Carbon</i>, 2014,68,670.<br />
26 Xu Z W, Zhang J G, Shan M J, et al. <i>Journal of Membrane Science</i>, 2014,458,1.<br />
27 Ayyaru S,Ahn Y H. <i>Journal of Membrane Science</i>, 2017,525,210.<br />
28 Zhao H Y, Wu L G, Zhou Z J, et al. <i>Physical Chemistry Chemical Phy-sics</i>, 2013,15(23),9084.<br />
29 Wu H Q, Tang B B,Wu P Y. <i>Journal of Membrane Science</i>, 2014,451,94.<br />
30 Yu L, Zhang Y T, Zhang B, et al. <i>Journal of Membrane Science</i>, 2013,447,452.<br />
31 Ghaemi N, Zereshki S,Heidari S.<i>Process Safety & Environmental Protection</i>, 2017,111,475.<br />
32 Xie Q L, Zhang S S, Xiao Z Y, et al. <i>RSC Advances</i>, 2017,7(30),18755.<br />
33 Zhang J G, Xu Z W, Shan M J, et al. <i>Journal of Membrane Science</i>, 2013,448,81.<br />
34 Safarpour M, Khataee A,Vatanpour V.<i>Separation and Purification Technology</i>, 2015,140,32.<br />
35 Huang Y, Xiao C F, Huang Q L, et al. <i>Journal of Membrane Science</i>, 2018,548,184.<br />
36 Ying T C, Mahmoudi E, Mohammad A W, et al. <i>Desalination</i>, 2017,402,123.<br />
37 Xu H, Ding M, Liu S, et al. <i>Polymer</i>, 2017,117,198.<br />
38 Vatanpour V, Shockravi A, Zarrabi H, et al. <i>Journal of Industrial and Engineering Chemistry</i>, 2015,30,342.<br />
39 Zhao Q Q, Hou J W, Shen J N, et al. <i>Journal of Materials Chemistry A</i>, 2015,3(36),18696.<br />
40 Ouyang G, Hussain A, Li J B, et al. <i>RSC Advances</i>, 2015,5(86),70448.<br />
41 Ma J, Guo X, Ying Y, et al. <i>Chemical Engineering Journal</i>, 2016,313,890.<br />
42 Makhetha T A,Moutloali R M. <i>Journal of Membrane Science</i>, 2018,554,195.<br />
43 Lau W J, Ismail A F, Misdan N, et al. <i>Desalination</i>, 2012,287,190.<br />
44 Pan Y Y, Xu R P, Lu Z H, et al. <i>Journal of Membrane Science</i>, 2017,523,282.<br />
45 Ji Y L, An Q F, Guo Y S, et al. <i>Journal of Materials Chemistry A</i>, 2016,4(11),4224.<br />
46 Misdan N, Ismail A F,Hilal N. <i>Desalination</i>, 2016,380,105.<br />
47 Tang Y J, Xu Z L, Xue S M, et al. <i>Journal of Membrane Science</i>, 2016,498,374.<br />
48 Cheng X Q, Liu Y Y, Guo Z H, et al.<i>Journal of Membrane Science</i>, 2015,493,156.<br />
49 Lai G S, Lau W J, Goh P S, et al.<i>Desalination</i>, 2016,387,14.<br />
50 Liu Q,Xu G R. <i>Desalination</i>, 2016,394,162.<br />
51 Ali M E A, Wang L Y, Wang X Y, et al.<i>Desalination</i>, 2016,386,67.<br />
52 Yin J, Zhu G C,Deng B L. <i>Desalination</i>, 2016,379,93.<br />
53 Chae H R, Lee J, Lee C H, et al. <i>Journal of Membrane Science</i>, 2015,483,128.<br />
54 He L, Dumee L F, Feng C F, et al. <i>Desalination</i>, 2015,365,126.<br />
55 Wang J, Zhao C W, Wang T, et al.<i>RSC Advances</i>, 2016,6(85),82174.<br />
56 Bano S, Mahmood A, Kim S J, et al. <i>Journal of Materials Chemistry A</i>, 2015,3(5),2065.<br />
57 Xia S J, Yao L J, Zhao Y, et al.<i>Chemical Engineering Journal</i>, 2015,280,720.<br />
58 Xue S M, Ji C H, Xu Z L, et al. <i>Journal of Membrane Science</i>, 2018,545,185.<br />
59 Xie Q, Shao W, Zhang S, et al. <i>RSC Advances</i>, 2017,7(86),54898.<br />
60 Shao L, Cheng X Q, Wang Z X, et al.<i>Journal of Membrane Science</i>, 2014,452,82.<br />
61 Ding R, Zhang H Q, Li Y F, et al. <i>Chemical Engineering Science</i>, 2015,138,227.<br />
62 Lee J, Jang J H, Chae H R, et al. <i>Journal of Materials Chemistry A</i>, 2015,3(44),22053.<br />
63 Kim S G, Hyeon D H, Chun J H, et al.<i>Desalination and Water Treatment</i>, 2013,51(31-33),6338.<br />
64 Chae H R, Lee C H, Park P K, et al. <i>Journal of Membrane Science</i>, 2017,525,99.<br />
65 Park M J, Phuntsho S, He T, et al. <i>Journal of Membrane Science</i>, 2015,493,496.<br />
66 Perreault F, Tousley M E, Elimelech M.<i>Environmental Science & Techno-logy Letters</i>, 2014,1(1),71.<br />
67 Hegab H M, Wimalasiri Y, Ginic-Markovic M, et al. <i>Desalination</i>, 2015,365,99.<br />
68 Xu G R, Wang S H, Zhao H L, et al.<i>Journal of Membrane Science</i>, 2015,493,428.<br />
69 Wang Q, Guo X Y, Shao H Q, et al. <i>Progress in Chemistry</i>, 2015,27(10),1470(in Chinese).<br />
王茜, 郭晓燕, 邵怀启, 等.化学进展, 2015,27(10),1470.<br />
70 Dai H W, Xu Z J,Yang X N. <i>Journal of Physical Chemistry C</i>, 2016,120(39),22585.<br />
71 Tsou C H, An Q F, Lo S C, et al.<i>Journal of Membrane Science</i>, 2015,477,93.<br />
72 Choi W, Choi J, Bang J, et al.<i>ACS Applied Materials & Interfaces</i>, 2013,5(23),12510.<br />
73 Wang N X, Ji S L, Zhang G J, et al. <i>Chemical Engineering Journal</i>, 2012,213,318.<br />
74 Nan Q, Li P,Cao B.Applied Surface Science,2016,387,521.<br />
75 Wang T, Lu J R, Mao L L, et al. Journal of Membrane Science,2016,515,125.<br />
76 Zhao J, Zhu Y W, Pan F S, et al. Journal of Membrane Science,2015,487,162.<br />
77 Hu M,Mi B X. Journal of Membrane Science,2014,469,80.<br />
78 Salehi H, Rastgar M,Shakeri A. Applied Surface Science,2017,413,99.<br />
79 Hu M,Mi B X. Environmental Science & Technology,2013,47(8),3715.<br />
80 Xia S J, Ni M, Zhu T R, et al. Desalination,2015,371,78.<br />
81 Jiang Y, Wang W N, Liu D, et al. Environmental Science & Technology,2015,49(11),6846.<br />
82 Soroush A, Ma W, Silvino Y, et al. Environmental Science Nano,2015,2(4),395.<br />
83 Zhang Y, Zhang S,Chung T S. Environmental Science & Technology,2015,49(16),10235.<br />
84 Zhang Y, Zhang S, Gao J, et al.Journal of Membrane Science,2016,515,230.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[4] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[7] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[10] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[11] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[12] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[13] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[14] 徐萍, 钱晓明, 郭昌盛, 徐志伟, 赵立环, 买魏, 李静, 田旭, 朵永超. 用于盐湖卤水镁锂分离的纳滤技术研究进展[J]. 材料导报, 2019, 33(3): 410-417.
[15] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed