Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22050235-9    https://doi.org/10.11896/cldb.22050235
  无机非金属及其复合材料 |
不同物料配比充填料浆流变性的体积浓度效应
黄振华1, 李翠平1,*, 李雪1, 阮竹恩1,2,3,*, 王少勇1,3
1 北京科技大学土木与资源工程学院,北京 100083
2 北京科技大学顺德创新学院,广东 佛山 528399
3 北京科技大学金属矿山高效开采与安全教育部重点实验室,北京 100083
Volume Concentration Effect on Rheology of Filling Slurry with Different Material Ratios
HUANG Zhenhua1, LI Cuiping1,*, LI Xue, RUAN Zhuen1,2,3,*, WANG Shaoyong1,3
1 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Shunde Innovation School of University of Science and Technology Beijing, Foshan 528399, Guangdong, China
3 Key Laboratory of the Ministry of Education of China for High-efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 10042KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 充填料浆中固体体积浓度与其临界体积浓度的比值(简称体积浓度比)是决定料浆流变性的重要指标,充填料浆的物料尺度、浓度、配比是影响料浆流变特性的重要因素。通过全面实验法,研究了不同的尾砂配比、砂灰比与质量分数对充填料浆流变性的影响,获取了不同物料情况下的临界体积浓度,分析了充填料浆流变性与体积浓度比的定量关系。研究表明,稳态流动下充填料浆的动态屈服应力与塑性黏度随质量分数的增大而增大,随砂灰比的增大而减小,同时在高质量分数下,尾砂配比和砂灰比的交互作用较强,充填料浆动态屈服应力与塑性黏度的波动性较大,且波动性随着砂灰比的增大而增强;进而通过将充填料浆固体体积浓度归一化为体积浓度比,充填料浆的动态屈服应力与体积浓度比呈幂函数的量化关系,而塑性黏度由于固结剂水化引起的应力传导减弱导致其与体积浓度比没有良好的量化关系,刚性尾砂颗粒的应力传导是造成料浆流变特性体积浓度效应的重要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄振华
李翠平
李雪
阮竹恩
王少勇
关键词:  尾砂配比  砂灰比  体积浓度比  流变特性  级配参数    
Abstract: The ratio of solid volume concentration to critical volume concentration in the filling slurry (referred to as volume concentration ratio) is an important factor to determine the flowability of the slurry, and the material scale, concentration, and ratio of the filling slurry are important factors affecting the rheological properties of the slurry. The effects of different tailing sand ratios, sand-cement ratios, and mass concentrations on the rheological properties of the filling slurry were investigated by a comprehensive experimental method, and the critical volume concentrations were obtained for different material cases. The quantitative relationship between the flowability of the filling slurry and the volume concentration ratio was analyzed. The results showed that the rheological parameters of the filling slurry under steady-state flow increased with increasing mass concentration and decreased with increasing sand-cement ratio. The interaction between tailing sand ratio and sand-cement ratio was stronger at high mass concentration, and the volatility of the rheological parameters of the filling slurry was larger. The volatility increased with an increasing sand-cement ratio. Further, by normalizing the filling slurry solid volume concentration to its critical volume concentration as the volume concentration ratio, it was found that the dynamic yield stress of the filling slurry was quantified as a power function of the volume concentration ratio. At the same time, the plastic viscosity did not have a good quantified relationship with the volume concentration ratio due to the weakened stress conduction caused by the hydration of the cementing agent, indicating that the stress transfer of the rigid tailing sand particles was an important cause of the volume concentration effect of the rheological properties of the slurry.
Key words:  tailing sand ratio    sand-cement ratio    volume ratio    rheological property    grading parameter
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TD853  
基金资助: 国家自然科学基金(52130404);中国博士后科学基金(2021M690011);广东省基础与应用基础研究基金(2021A1515110161);北京科技大学顺德研究生院博士后科研经费(2021BH011)
通讯作者:  * 李翠平,北京科技大学教授、博士研究生导师。先后于北京科技大学获学士学位(1997)、博士学位(2003)(硕博连读),2005年博士后出站留校参加工作。2010年入选教育部“新世纪优秀人才”支持计划。长期致力于矿业工程与信息技术、流体力学、经济学等学科的交叉研究,主攻膏体充填与矿山固废处置流变学、矿业系统工程、矿业经济等研究方向,先后主持国家自然科学基金项目3项,负责/参与了包括国家“十一五”、“十二五”、“十三五”科技计划等20余项科研项目,获得省部级科技奖励3项,出版专著3部、教材2部,发布国家标准2部,发表学术论文60余篇,注册计算机软件著作权4项,是中国力学学会流变学专业委员会委员、有色金属行业智能制造联盟理事、中国煤炭学会煤矿系统工程专业委员会委员。
阮竹恩,北京科技大学特聘副教授、硕士研究生导师。先后于北京科技大学获学士学位(2013)、硕士学会(2016)、博士学位(2021)。2021年入选中国科协第七届青年人才托举工程。主要从事金属矿膏体流变学理论与膏体充填采矿技术研究,先后主持/参与国家自然科学基金项目、“十三五”、“十四五”重点研发计划课题等近10项科研项目,获得省部级科技奖励5项,出版专著1部,以第一作者/通信作者身份发表SCI/EI论文30余篇,获授权国家发明专利10余项。cpli@ustb.edu.cn;ziyuan0902rze@163.com,ustb_ruanzhuen@hotmail.com   
作者简介:  黄振华,2020年6月于东华理工大学获得工学学士学位。现为北京科技大学土木与资源工程学院硕士研究生,在李翠平教授的指导下进行研究。目前主要研究领域为膏体充填及其流变学。
引用本文:    
黄振华, 李翠平, 李雪, 阮竹恩, 王少勇. 不同物料配比充填料浆流变性的体积浓度效应[J]. 材料导报, 2023, 37(22): 22050235-9.
HUANG Zhenhua, LI Cuiping, LI Xue, RUAN Zhuen, WANG Shaoyong. Volume Concentration Effect on Rheology of Filling Slurry with Different Material Ratios. Materials Reports, 2023, 37(22): 22050235-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050235  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22050235
1 Cheng H Y, Wu A H, Wu S C, et al. Chinese Journal of Engineering, 2022, 44(1), 11 (in Chinese).
程海勇, 吴爱祥, 吴顺川, 等. 工程科学学报, 2022, 44(1), 11.
2 Wu A X, Li H, Cheng H Y, et al. Chinese Journal of Engineering, 2020, 42(7), 803 (in Chinese).
吴爱祥, 李红, 程海勇, 等. 工程科学学报, 2020, 42(7), 803.
3 Luckham P F, Ukeje M A. Journal of Colloid and Interface Science, 1999, 220(2), 347.
4 Meharthaj H, Arockiarajan A, Acta Mechanica, 2022, 233(2), 837.
5 Wang H, Lu C R, Liu W B, et al. Materials Reports, 2020, 34(S2), 1255 (in Chinese).
王珩, 陆采荣, 刘伟宝, 等. 材料导报, 2020, 34(S2), 1255.
6 Yuan J, Ye L, Hu G, et al. Soil Mechanics and Foundation Engineering, 2020, 57(1), 35.
7 Feichtinger A, Scholten E, Sala G. Food Funct, 2020, 11(11), 9547.
8 Zhou T, Zhang L, Zhao R, et al. Food Research International, 2022, 156, 111112.
9 Chun J, Oh T, Luna M, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384(1-3), 304.
10 Singh H, Kumar S, Mohapatra S K, et al. Journal of Cleaner Production, 2021, 323, 129183.
11 Han F, Pu S, Zhou Y, et al. Journal of Building Engineering, 2022, 51, 104313.
12 Xu W B, Yang B G, Yang S L, et al. Journal of Central South University(Science and Technology), 2016, 47(4), 1282 (in Chinese).
徐文彬, 杨宝贵, 杨胜利, 等. 中南大学学报(自然科学版), 2016, 47(4), 1282.
13 Wen Z J, Gao Q, Wang Y D, et al. Journal of Northeastern University(Natural Science), 2020, 41(5), 642 (in Chinese).
温震江, 高谦, 王永定, 等. 东北大学学报(自然科学版), 2020, 41(5), 642.
14 Senapati S, Pothal J K, Mohanty A. Particulate Science and Technology, 2019, 37(6), 707.
15 Cheng H, Wu S, Zhang X, et al. International Journal of Minerals, Metallurgy and Materials, 2020, 27(1), 10.
16 Ng P L, Chen J J, Kwan A K H. Journal of Sustainable Architecture and Civil Engineering, 2016, 16(3), 108.
17 Ma G, Zou Y, Gao K, et al. Geophysical Research Letters, 2020, 47(23), e2020GL090458.
18 Senapati S, Pothal J K, Mohanty A. Particulate science and technology, 2019, 37(6), 707.
19 Voivret C, Radjai F, Delenne J Y, et al. Physical Review Letters, 2009, 102(17), 178001.
20 Castellanos D, Bagaria P, McementUGA C V. Powder Technology, 2020, 367, 782.
21 Desmond K W, Weeks E R. Physical Review E, 2014, 90(2), 22204.
22 Gu Y, Ozel A, Sundaresan S. Powder Technology, 2016, 295, 322.
23 Pednekar S, Chun J, Morris J F. Journal of Rheology, 2018, 62(2), 513.
24 Di Vaira N J, Łaniewski-wołłk Ł, Johnson R L, et al. Journal of Fluid Mechanics, 2022, 939, A30.
25 Wu F, Yang F G, Xiao B L, et al. Materials Reports, 2021, 35(3), 3021 (in Chinese).
吴凡, 杨发光, 肖柏林, 等. 材料导报, 2021, 35(3), 3021.
26 Mardani-aghabaglou A, Kankal M, Nacar S, et al. Neural Computing and Applications, 2021, 33(19), 12805.
27 Li C P, Yan B H, Hou H Z, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(5), 1209 (in Chinese).
李翠平, 颜丙恒, 侯贺子, 等. 中国有色金属学报, 2020, 30(5), 1209.
28 ISO 9276-2:2014, Representation of results of particle size analysis-Part 2: Calculation of average particle sizes/diameters and moments from particle size distributions.
29 Wilms P, Hinrichs J, Kohlus R. Rheologica Acta, 2022, 61(2), 123.
30 Ness C, Sun J. Soft Matter, 2016, 12(3), 914.
31 Sierou A, Brady J F. Journal of Rheology, 2002, 46(5), 1031.
32 Pednekar S, Chun J, Morris J F. Soft Matter, 2017, 13(9), 1773.
33 Mehdipour I, Khayat k H. Construction and Building Materials, 2018, 161, 340.
34 Miao Y, Xin L, Yue H, et al. Applied Sciences, 2019, 9(5), 869.
35 Wu Yongli, Hou Qinfu, Dong Kejun, et al. China Particuology, 2020, 48, 170.
36 Kwan A K H, Wong V, FungW W S. Powder Technology, 2015, 274, 154.
37 Qiu J, Guo Z, Yang L, et al. Powder Technology, 2020, 359, 27.
38 Madraki Y, Oakley A, Nguyen Le A, et al. Journal of Rheology, 2020, 64(2), 227.
39 Saint-michel B, Manneville S, Meeker S, et al. Physics of Fluids, 2019, 31(10), 103301.
40 Mehdipour I, Khayat K H. Construction and Building Materials, 2018, 161, 340.
41 Richards J A, Guy B M, Blanco E, et al. Journal of Rheology, 2020, 64(2), 405.
[1] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[2] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[3] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[4] 张雨, 铁生年, 汪长安. 改性纳米碳粉芒硝基纳米流体强化传热[J]. 材料导报, 2022, 36(18): 20100294-7.
[5] 范世平, 朱洪洲, 钟伟明. 生物重油对老化50#沥青的再生效果评价[J]. 材料导报, 2022, 36(11): 21010089-5.
[6] 吴凡, 杨发光, 肖柏林, 杨志强, 高谦. 钢渣掺量对膏体早期强度及流变特性的影响[J]. 材料导报, 2021, 35(3): 3021-3025.
[7] 杨广鑫, 潘家保, 周陆俊, 高洪, 王晓雷. 磁流变脂材料及其应用研究进展[J]. 材料导报, 2021, 35(23): 23183-23191.
[8] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
[9] 李超, 崔世超, 王岚, 白雪峰. 多聚磷酸/SBS复合改性沥青的高温流变特性[J]. 材料导报, 2020, 34(14): 14057-14062.
[10] 温彦凯, 郭乃胜, 王淋, 顾威, 尤占平. 泡沫温拌沥青胶浆的流变特性及微观机制分析[J]. 材料导报, 2020, 34(10): 10052-10060.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed