Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21080052-6    https://doi.org/10.11896/cldb.21080052
  金属与金属基复合材料 |
氢冶金基础研究和新工艺探索
周美洁, 艾立群, 洪陆阔*, 孙彩娇, 周玉青, 孟凡峻
华北理工大学冶金与能源学院,河北 唐山 063210
Basic Research on Hydrogen Metallurgy and Exploration of New Technology
ZHOU Meijie, AI Liqun, HONG Lukuo*, SUN Caijiao, ZHOU Yuqing, MENG Fanjun
College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, Hebei, China
下载:  全 文 ( PDF ) ( 3044KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高炉炼铁和直接还原是目前最为主流的两大炼铁技术。高炉炼铁产能大,效率高,但其高焦比高能耗的现实与环境绿色发展的矛盾日益突出。煤基、气基直接还原或熔融还原技术的创新研发不断固化为效能的提高和成本的降低。但是,现有工艺下以碳的高效利用为核心的技术正在不断接近降碳的潜能极限。为按期实现碳中和、碳达峰的目标,钢铁制造业积极开发探索铁矿石的替代还原技术。在炼铁过程中合理利用H2对减少能源使用和CO2排放的作用越来越显著。本文论述了氢气还原铁矿石的基础研究、氢冶金的技术优势、我国氢冶金技术成果和发展面临的问题,提出并验证了采用微波照射实现含铁矿石的富氢或纯氢冶炼得到铁粉的新思路。在以H2/CO为还原剂的对比实验中,微波加热比常规加热方式还原效果好,微波下1 100 ℃时CO还原金属铁的还原率只达到3.1%,同条件下,H2还原金属铁的还原率可达78.6%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周美洁
艾立群
洪陆阔
孙彩娇
周玉青
孟凡峻
关键词:  氢冶金  微波  二氧化碳排放  还原  铁粉    
Abstract: Currently, blast furnace ironmaking process and direct reduction method are the most mainstream ironmaking technologies. Blast furnace ironmaking has large capacity and high efficiency, whereas the contradiction between high coke ratio and high energy consumption of blast furnace and the green development of the environment has become increasingly prominent. The innovative research and development of coal-based, gas-based direct reduction or smelting reduction technology continuously develop into efficiency improvement and cost reduction. However, the technology with the high-efficiency utilization of carbon as the core under the existing process is constantly approaching the potential limit of carbon reduction. With the purpose of carbon neutrality and carbon peaks, the steel manufacturing industry is actively developing and exploring alternative reduction technologies for iron ore. The rational use of H2 in the ironmaking process has become more and more significant in energy reducing and CO2 emissions. This article discusses the basic research of hydrogen reduction of iron ore, the technical advantages of hydrogen metallurgy and the problems of my country's hydrogen metallurgical technology achievements and development. It was proposed and verified that the microwave irradiation method could obtain iron powder by hydrogen-rich or pure hydrogen smelting. In the comparative experiment, microwave heating has a better reduction effect than conventional heating methods and H2 had a better reduction rate (78.6%) than that of CO(3.1%) at 1 100 ℃ on iron.
Key words:  hydrogen metallurgy    microwave    CO2 emission    reduction    iron powder
发布日期:  2023-07-10
ZTFLH:  TF746  
基金资助: 河北省自然科学基金(E2018209284;E2019209160;E2021209101); 河北省教育厅基础科技研究项目(JQN2020029);河北省研究生创新项目(CXZZBS2020131)
通讯作者:  *洪陆阔,2018年6月毕业于钢铁研究总院,获得博士学位。同年加入华北理工大学冶金与能源学院工作至今,主要从事炼钢新技术和资源综合利用的研究。发表核心论文10余篇,发表SCI论文10余篇。honglk@ncst.edu.cn   
作者简介:  周美洁,2017年6月毕业于华北理工大学,获得学士学位;2020年6月毕业于华北理工大学,获得工学硕士学位;现为华北理工大学冶金与能源院博士研究生,在艾立群教授的指导下进行研究。目前主要研究领域为洁净钢和品种钢。2021年7月获得全国大学生冶金科技竞赛三等奖。
引用本文:    
周美洁, 艾立群, 洪陆阔, 孙彩娇, 周玉青, 孟凡峻. 氢冶金基础研究和新工艺探索[J]. 材料导报, 2023, 37(13): 21080052-6.
ZHOU Meijie, AI Liqun, HONG Lukuo, SUN Caijiao, ZHOU Yuqing, MENG Fanjun. Basic Research on Hydrogen Metallurgy and Exploration of New Technology. Materials Reports, 2023, 37(13): 21080052-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080052  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21080052
1 Åhman M, Nilsson L J, Johansson B. Climate Policy, 2017, 17(5), 634.
2 Åhman M, Nilsson L J, Johansson B. Climate Policy, 2016, 6(13), 1.
3 Carlos D J, Henrique N J, Marques K H. In:5th International Confe-rence on Science and Technology of Ironmaking. Shanghai, China, 2009, pp.14.
4 Zhang S R. In:Proceedings of 6th ECIC. Dusseldorf, Germany, 2011, pp.1.
5 Zhang S R, Yin H. Iron Steel , 2007(9), 1 (in Chinese).
张寿荣, 银汉. 钢铁, 2007(9), 1.
6 Cavaliere P. Springer Nature Switzerland, 2019, 183, 478.
7 Longbottom RJ, Kolbeinsen L. Faculty of Engineering-Papers, 2008, 4, 1260
8 Bruggeman P J, Sadeghi N, Schram D C, et al. Plasma Sources Science and Technology, 2014, 23(2), 1.
9 Bogdandy L V, Engell H J. The Reduction of Iron Ores, DOI:10. 1007/978-3-662-10400-2.
10 McKewan W M. Transactions of the Metallurgical Society of Aimee, 1962, 224, 2.
11 Turkdogan E T, Olsson R G, Vinters J V. Metallurgical and Materials Transactions B, 1971, 2B, 96.
12 Jun S, Zhang H, Bechhoefer J. Physical Review E, 2005, 71, 011908.
13 Spreitzer D, Schenk J. Metallurgical and Materials Transactions B, 2019, 50(10), 2471.
14 Farjas J, Roura P. Acta Materialia, 2006, 54(20), 5573.
15 Chen H, Zheng Z, Chen Z, Bi T. Powder Technology, 2017, 316, 20.
16 Munteanu G, Ilieva L, Andreeva D. Thermochimica Acta 1997, 291, 77.
17 Shimokawabe M, Furuichi R, Ishii T. Thermochimica Acta, 1979, 28, 287.
18 Zhong Y W, Wang Z, Gao J T, et al. Powder Technology, 2016, 301(11), 1144.
19 Guo X G, Yasushi S, Yoshiaki K, et al. Metallurgical and Materials Transactions B, 2004, 35B, 517.
20 Pineau A, Kanari N. Thermochimica Acta, 2006, 447(1), 89.
21 Pineau A, Kanari N, Gaballah I. Thermochimica Acta, 2007, 456(2), 75.
22 Sabat K C, Paramguru R K, Pradhan S, et al. Plasma Chemistry and Plasma Processing, 2014, 34 (1), 1.
23 Rajput P, Sabat K C, Paramguru R K, et al. Ironmaking & Steelma-king, 2014, 41(10), 31.
24 Rajput P, Bhoi B, Sahoo S, et al. Ironmaking & Steelmaking, 2013, 40(1), 61.
25 Sohn H Y, Olivas-Martinez M. Journal of Metals, 2014, 66 (9), 64.
26 Liu W, Lim J Y, Saucedo M A, et al. Chemical Engineering Science, 2014, 120, 149.
27 Ferrari A, Hunt J, Lita A. The Journal of Physical Chemistry C, 2014, 118 (18), 9346.
28 Yukiaki H, Mitsuhiro S, Shinichi K. Iron and Steel, 1976, 62(3), 315.
29 Masanori Tokuda. Blast furnace in reaction(II). Japan steel association 116117th nishiyama memorial technology lecture, Nishiyama, 1987.
30 Murakami T, Kamiya Y, Kodaira T, et al. ISIJ International, 2012, 52(8), 1447.
31 Liu D H, Wang X Z, Zhang J L, et al. Metallurgical Research & Technology, 2017, 114(6), 1.
32 Moujahid S E, Rist. AMetallurgical Transactions B, 1988, 19(5), 787.
33 Guo L, Gao H, Yu J T, et al. International Journal of Minerals Metallurgy and Materials, 2015, 1, 12.
34 Plaul J F, Hiebler H. Metalurgija, 2004, 3, 155.
35 Sabat K C, Murphy A B. Metallurgical and Materials Transactions B, 2017, 48(3), 1561.
36 Sabat K C, Rajput P, Paramguru R K, et al. Plasma Chem. Plasma Process. , 2014, 34 (1), 1
37 Xing L Y, Qu Y X, Wang C S, et al. Metallurgical and Materials Tran-sactions B, 2019, 12, 1
38 Yousef M, Chen F, Mohamed E, et. al. Process the Minerals, Metals & Materials Society, 2016, 2, 221.
39 Sohn H Y, Fan D Q. Metals, 2021, 11, 332.
40 Qu Y X, Xing L Y, Wang C S. International Journal of Hydrogen Energy, 2020, 45, 31481
41 Gold R G, Sandall W R, Cheplick P G, et al. Ironmaking & Steelmaking, 1977, 4 (10), 10.
42 Tang J, Chu M S, L F, et al. Hebei Metallurgy, 2020(8), 1(in Chinese).
唐珏, 储满生, 李峰, 等. 河北冶金, 2020(8), 1.
43 Barreto L, Makihira A, Riahi K. International Journal of Hydrogen Energy, 2003, 28(3), 267.
44 Wang S, Lu A L, Zhong C J. Nano Converg, 2021, 8, 2196.
45 Walters L, Wade D, Lewis D. Nuclear Energy, 2002, 42(1), 55.
46 Ogden J M. Annual Review of Energy and the Environment, 1999, 24, 227.
47 Forsberg C W. International Journal of Hydrogen Energy, 2007, 32, 9.
48 Lee S Y, Park S J. International Journal of Hydrogen Energy, 2015, 23, 1.
49 Dutcher B, Fan M, Russell A G. ACS Applied Materials & Interfaces, 2015, 7(4), 2137.
50 Lewis D. Progress in Nuclear Energy, 2008, 50, 394.
51 Cheng J, Roy R, Agrawal D. Materials Research Innovations, 2002, 5, 170.
52 Roy R, Peelamedu R, Hurtt L, et al. Materials Research Innovations, 2002, 6, 128.
53 Chen J, Liu L, Zeng J Q, et al. Journal of Iron and Steel research International, 2005, 12, 16.
54 Zhong S, Geotzman H E, Bleifuss R L. Mining Metallurgy & Exploration, 1996 (300), 174.
55 Mourao MB, Parreiras I, Carvalho J, Takano C. ISIJ International, 2001 (41), S27.
56 Chen J, Liu L, Zeng J Q, et al. Iron Steel, 2004, 39 (6), 1(in Chinese).
陈津, 刘浏, 曾加庆, 等. 钢铁, 2004, 39 (6), 1.
57 Ishizaki K, Nagata K, Hayashi T. ISIJ International, 2006, 46(10), 1403.
[1] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[2] 黄威, 王轩, 李永清, 王源升, 王博, 王玉江, 魏世丞. 微波吸收材料电磁特性响应规律及影响因素研究进展[J]. 材料导报, 2023, 37(7): 21090051-11.
[3] 王均委, 李琳, 齐家瑞, 郑勤红, 姚斌. 圆柱形光子晶体微波反应腔的加热效率和均匀性研究[J]. 材料导报, 2023, 37(4): 21060010-8.
[4] 吕晓书, 王霞玲, 蒋光明, 熊昆, 汪小莉, 张贤明. 纳米零价铁基材料去除水中硝酸盐污染的研究进展[J]. 材料导报, 2023, 37(4): 21010052-10.
[5] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[6] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[7] 孙彬, 高圣伦, 郝明欣, 曹光明, 李志峰. 小压下冷轧对热轧带钢氧化铁皮氢气还原动力学的影响[J]. 材料导报, 2023, 37(4): 21090067-6.
[8] 赵悦, 李德念, 阳济章, 熊传溪, 袁浩然, 陈勇. 中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究[J]. 材料导报, 2023, 37(2): 21070205-7.
[9] 王昕阳, 魏世丞, 梁义, 王玉江, 王博. 微波吸收复合材料体系及其计算机辅助设计的研究进展[J]. 材料导报, 2023, 37(11): 21050233-10.
[10] 叶嘉鸿, 李德念, 阳济章, 赵悦, 袁浩然, 陈勇. 氮掺杂再生活性炭的制备及电催化氧还原反应性能研究[J]. 材料导报, 2023, 37(10): 22080168-7.
[11] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[12] 胥聪敏, 高豪然, 朱文胜, 杨兴, 陈月清, 王文渊. D-氨基酸驱散生物膜的行为与作用机理研究[J]. 材料导报, 2023, 37(1): 21050076-7.
[13] 赵颖平, 陶平, 李文华, 闵秀博, 余忆玄, 孙天军. 载体改性提高船舶尾气锰铬催化剂的脱硝性能[J]. 材料导报, 2022, 36(Z1): 21080248-6.
[14] 李娜, 陈泽东, 王晶晶, 张凯, 武文斐. 基于氧化铈的低温NH3-SCR催化剂的研究进展[J]. 材料导报, 2022, 36(8): 20080137-8.
[15] 谷米, 孙荣禄, 牛伟, 郝文俊, 左润燕. 硼铁粉含量对激光熔覆AlCoCrFeNi高熵合金涂层性能及形貌的影响[J]. 材料导报, 2022, 36(8): 20120230-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed