Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21090067-6    https://doi.org/10.11896/cldb.21090067
  金属与金属基复合材料 |
小压下冷轧对热轧带钢氧化铁皮氢气还原动力学的影响
孙彬1,*, 高圣伦1, 郝明欣1, 曹光明2, 李志峰3
1 沈阳大学机械工程学院,沈阳 110044
2 东北大学轧制技术及连轧自动化国家重点实验室,沈阳 110819
3 内蒙古科技大学材料与冶金学院,内蒙古 包头 014010
Hydrogen Reduction Kinetics of Oxide Scale of Hot Rolled Steel During Cold Rolling at Low Pressure
SUN Bin1,*, GAO Shenglun1, HAO Mingxin1, CAO Guangming2, LI Zhifeng3
1 Mechanical Engineering Institute, Shenyang University, Shenyang 110044, China
2 State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819, China
3 School of Material and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010,Inner Mongolia,China
下载:  全 文 ( PDF ) ( 9467KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了弄清小压下冷轧对热轧带钢氧化铁皮氢气还原动力学行为的影响,对热轧带钢分别进行了压下率分别为5%和10%的单道次冷轧实验。同时利用热重分析仪对经过5%冷轧和未冷轧氧化铁皮试样进行还原动力学实验,还原气氛为30%(体积分数)H2-N2混合气氛,还原温度为500~800 ℃。结果表明:经过5%和10%的小压下冷轧后,氧化铁皮表面出现大量裂纹。5%压下后氧化铁皮只开裂未剥落,10%压下后氧化铁皮已出现粉状脱落。在还原动力学实验中,在500~600 ℃下,经过5%压下后的氧化铁皮在还原过程中的诱导期变短,在700~800 ℃,诱导期变化不大。氢气还原氧化铁皮的控制性步骤可以分为:氢原子和氧原子在氧化铁皮层中的扩散、气-固的界面反应以及新相的形核和长大。在500 ℃时,5%冷轧和未冷轧氧化铁皮还原反应控制性步骤均为新相的形核和长大。在800 ℃时,两种样品还原反应控制性步骤变为气-固的界面反应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙彬
高圣伦
郝明欣
曹光明
李志峰
关键词:  热轧带钢  氧化铁皮  还原动力学  氢气  小压下冷轧    
Abstract: To understand hydrogen reduction kinetics of oxide scale of hot rolled steel during cold rolling at low pressure,the single pass cold rolling test of oxide scale was carried out using 5% and 10% deformation. The reduction kinetics tests with 5% deformation and without cold rolling spe-cimens, which reacted with 30vol% H2-N2at the temperature range of 500—800 ℃, were investigated by thermogravimetric analysis(TGA).The results show that a considerable amount of cracks appeared in oxide scale after 5% and 10% deformation of cold rolling. After 5% deformation, oxide scale became only cracking without spalling, while powered scale spalled from substrate during 10% deformation.The induction period of oxide scale could be shorten after 5% deformation at 500—600 ℃, while it was almost not changed at 700—800 ℃.The control steps of oxide scale reduction by hydrogen includes diffusion of hydrogen and oxygen atoms in oxide scale, gas-solid interface reaction, and nucleation and growth of new phases.The reduction reaction control step of oxide scale was nucleation and growth of new phases at 500 ℃, while it became gas-solid interface reaction at 800 ℃.
Key words:  hot rolled steel    oxide scale    reduction kinetics    hydrogen    cold rolling at low pressure
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  TG172.3  
基金资助: 国家自然科学基金(51301111);辽宁省自然基金(2019-KF-05-04);沈阳市中青年科技创新人才支持计划(RC200387)
通讯作者:  * 孙彬,沈阳大学机械工程学院副院长、教授、博士研究生导师。2011年博士毕业于东北大学,主要研究方向是钢铁材料的高温氧化。2018年进入东北大学和邯钢股份有限公司联合培养的博士后流动站工作。主持了国家自然科学基金青年基金、辽宁省自然基金、辽宁省教育厅一般项目和辽宁省自然基金(重点领域)联合基金等。发表论文30余篇,获得发明专利7项,出版专著1部。sunbin_shenyang@163.com   
引用本文:    
孙彬, 高圣伦, 郝明欣, 曹光明, 李志峰. 小压下冷轧对热轧带钢氧化铁皮氢气还原动力学的影响[J]. 材料导报, 2023, 37(4): 21090067-6.
SUN Bin, GAO Shenglun, HAO Mingxin, CAO Guangming, LI Zhifeng. Hydrogen Reduction Kinetics of Oxide Scale of Hot Rolled Steel During Cold Rolling at Low Pressure. Materials Reports, 2023, 37(4): 21090067-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090067  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21090067
1 Wang M. Jiangxi Metallurgy, 2020, 40(4), 43(in Chinese).
王明. 江西冶金, 2020, 40(4), 43.
2 Li Z F, Sun C, Zhang Z X, et al. Hebei Metallurgy, 2019(9), 1(in Chinese).
李志峰, 孙超, 张志新, 等. 河北冶金, 2019(9), 1.
3 Li Z F, Cao G M, Lin F, et al. ISIJ International, 2017, 57(11), 2034.
4 Wan H K, Seungmoon L, Sung M K, et al. International Journal of Hydrogen Energy, 2013, 38, 4194.
5 Jing Y A, Yaun Y M, Yan X L, et al. International Journal of Hydrogen Energy, 2017, 42, 10611.
6 Ding D J, Peng H, Peng W J, et al. International Journal of Hydrogen Energy, 2017, 7, 1.
7 Chen R Y, Yuen W. Oxidation of Metals, 2017, 88(5/6), 687.
8 Liu X J, Cao G M, He Y Q, et al. Journal of Iron and Steel Research, International, 2014, 21(1), 24.
9 Li Z F, Gao Y, Cao G M, et al. Journal of Materials Science, 2020, 55, 1826.
10 Guan C, Li J, Tan N, et al. International Journal of Hydrogen Energy, 2014, 39, 15116.
11 He Y Q, Jia T, Li Z F, et al. Metallurgical and Materials Transactions, 2016, 47A, 4845.
12 Ivana C, Ivana P, Michael S. Corrosion Science, 2005, 48(4), 980.
13 He Y Q. Research and application of hot dip galvanizing of hot-rolled steel strip without pickling. Ph.D. Thesis, Northeastern University, China, 2015 (in Chinese).
何永全. 热轧带钢免酸洗还原热镀锌工艺研究与应用, 博士学位论文, 东北大学, 2015.
14 Li Z F. Evolution Mechanism of Oxide scale on hot-rolled steels and development of free-pickling technology. Ph.D. Thesis, Northeastern University, China, 2018(in Chinese).
李志峰. 热轧钢材氧化铁皮演变机理与免酸洗技术开发, 博士学位论文, 东北大学, 2018.
15 Piotrowski K, Mondal K, Lorethova H, et al. International Journal of Hydrogen Energy, 2005, 30, 1543.
16 Hancock J, Sharp J. Journal of the American Ceramic Society, 1972, 55(2), 74.
17 Ortega A. Thermochimica acta, 1996, 284(2), 379.
18 Guan C, Li J, Tan N, et al. Ironmaking & Steelmaking, 2016, 43(10), 739.
19 Li Z F, Wang H, Gao Y, et al. Steel Research International, 2019, 19, 1900333.
[1] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[2] 于濂清, 杨钱龙, 朱海丰, 段丽杰, 赵兴雨, 王艳坤. 氢还原氢氟酸刻蚀的TiO2纳米薄膜光电化学性能[J]. 材料导报, 2021, 35(20): 20001-20004.
[3] 孙彬, 程磊, 尤宏广, 曹光明, 刘振宇. 镀锌用热轧SPHC钢的氧化铁皮在升温过程的组织转变[J]. 材料导报, 2021, 35(14): 14125-14129.
[4] 孙彬, 郝明欣, 尤宏广, 王皓, 曹光明. Fe-1Cr-0.2Si钢的高温氧化行为[J]. 材料导报, 2020, 34(16): 16131-16135.
[5] 李志峰,何永全,曹光明,汤军舰,刘振宇. 热轧钢材氧化铁皮的高温形变机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 259-262.
[6] 谢蔚, 张亚东, 周琼宇, 成祥, 胡安伟, 张路. 氢气气氛中热处理对Ni-W合金镀层组织和性能的影响*[J]. 《材料导报》期刊社, 2017, 31(16): 94-97.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed