Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21090051-11    https://doi.org/10.11896/cldb.21090051
  无机非金属及其复合材料 |
微波吸收材料电磁特性响应规律及影响因素研究进展
黄威1, 王轩2, 李永清1,*, 王源升1,2,*, 王博3, 王玉江3, 魏世丞3
1 海军工程大学舰船与海洋学院,武汉 430033
2 海军工程大学基础部,武汉 430033
3 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Law of Electromagnetic Response of Microwave Absorbing Materials and the Relevant Influences:a Review
HUANG Wei1, WANG Xuan2, LI Yongqing1,*, WANG Yuansheng1,2,*, WANG Bo3, WANG Yujiang3, WEI Shicheng3
1 Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China
2 Department of Basics, Naval University of Engineering, Wuhan 430033, China
3 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 22485KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微波吸收材料可以防止电磁干扰,保证电磁信息的安全,减轻电磁辐射对人体健康的危害,无论在军用和民用上都具有很高价值。复介电常数和复磁导率是影响材料微波吸收性能的基本参数。有关电磁参数的设计理论已发展较为成熟。通过相关数值方法,根据材料对反射损耗、厚度等的约束要求,可计算得到符合实际条件的电磁参数。然而,数值方法得到的电磁参数可能会偏离实际范畴,不能给具体的材料设计提供有意义的指导。
因此,进一步了解材料的内在特性与GHz频段电磁辐射的相互作用规律,对吸波材料制备技术的持续进步至关重要。电磁波吸收的候选材料中,介电损耗材料因具有更强的损耗能力而表现出独特的优势,其高损耗能力来源于电导特性和极化弛豫。其中,设计具有低逾渗阈值的材料结构有利于电导能力的充分利用,引入缺陷/界面将增加极化位点使极化弛豫进一步增强。但过分追求高介电损耗可能会导致复介电常数过高,材料阻抗与空气失配,引入磁性材料可使复磁导率提高,改善阻抗匹配特性。复磁导率的提高可以通过完善材料静磁特性和优化磁共振实现。
本文结合通过改善复介电常数/复磁导率来修饰材料吸波性能的相关成果,分别讨论了逾渗网络构建、单/多组分介质极化工程对复介电常数谱以及静磁特性修饰、磁共振优化对复磁导率谱的具体影响。最后,还指出材料内禀属性和电磁参数关联性研究中所面临的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄威
王轩
李永清
王源升
王博
王玉江
魏世丞
关键词:  微波吸收  介电常数  磁导率  逾渗网络  极化弛豫  饱和磁化强度  矫顽力    
Abstract: Microwave absorbing materials are hugely important in civil and military fields as they can prevent electromagnetic interference, ensure the safety of electromagnetic information, and reduce the harm of electromagnetic radiation to human health. Complex permittivity and complex permeability are the basic parameters affecting the microwave absorption properties of materials. Depending on the actual constraints on reflection loss and material thickness, the required electromagnetic parameters can be calculated. However, the ideal electromagnetic parameters obtained via numerical methods may deviate from the actual scope and may not provide meaningful guidance for the actual material design.
Therefore, it is very important for the continuous progress of the preparation technology of microwave absorbing materials to deepen our understanding of the relationship between the internal characteristics of materials and the GHz-band electromagnetic radiation. Among the candidates suitable for electromagnetic wave absorption, dielectric loss materials exhibit unique advantages as a result of their strongerloss ability compared with that of magnetic loss materials. Furthermore, the high loss ability originates from the conductivity and polarization relaxation. The conductivity can be improved by designing a material structure with a low percolation threshold, and the polarization relaxation can be improved by introducing defects and increasing the interface area. However, a higher dielectric loss may lead to a highly complex permitivity and a mismatch between material impedance and air. The complex permeability and impedance matching characteristics can be improved by introducing magnetic materials. The improvement of the complex permeability can be achieved by improving the magnetostatic properties of materials and optimizing magnetic resonance.
In this paper, the effects of the percolation network, polarization relaxation of single/multicomponent media, and magnetostatic modification and magnetic resonance optimization on the complex permeability spectrum are discussed. Finally, the challenges in the study of the correlation between intrinsic properties and electromagnetic parameters are presented.
Key words:  microwave absorption    permittivity    permeability    percolation network    polarization relaxation    saturation magnetization    coercivity
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TB34  
基金资助: 基础加强计划重点基础研究项目(2019-JCJQ-ZD-387-03);国防科技卓越青年科学基金(2017-JCJQ-ZQ-001);国家自然科学基金(51905543)
通讯作者:  * 李永清,2000年于湖北工业大学获学士学位,2004年、2012年于海军工程大学分别获硕士和博士学位。现为海军工程大学副教授,主要从事船用复合材料及其工程应用研究。发表论文90余篇,其中EI、SCI检索共计50余篇。liyongqing@126.com
王源升,1982年、1985年于海军工程大学分别获学士和硕士学位,1995年于四川大学获博士学位。现为海军工程大学教授,长期从事高分子材料及其应用研究工作,曾任高分子材料工程国家重点实验室主任等。先后获国家发明三等奖1项、军队科技进步一等奖3项等。入选国家有突出贡献的中青年专家、国家“百千万人才工程”第一、二层次人选等。发表论文200余篇,其中EI、SCI检索共计140余篇。sklpmeysw@scu.edu.cn   
作者简介:  黄威,2019年12月毕业于陆军装甲兵学院,获得工学硕士学位。现为海军工程大学博士研究生。学科方向为船用功能材料及其应用,目前主要研究领域为微波吸收材料。
引用本文:    
黄威, 王轩, 李永清, 王源升, 王博, 王玉江, 魏世丞. 微波吸收材料电磁特性响应规律及影响因素研究进展[J]. 材料导报, 2023, 37(7): 21090051-11.
HUANG Wei, WANG Xuan, LI Yongqing, WANG Yuansheng, WANG Bo, WANG Yujiang, WEI Shicheng. Law of Electromagnetic Response of Microwave Absorbing Materials and the Relevant Influences:a Review. Materials Reports, 2023, 37(7): 21090051-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090051  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21090051
1 Xu P, Zhang R, Qian X, et al. ACS Applied Materials & Interfaces, 2021, 13(27), 32037.
2 Qiao M T, Wei D, He X W, et al. Journal of Materials Science, 2021, 56(2), 1.
3 Otmane F, Triaa S, Hamlati Z, et al. Defect and Diffusion Forum, 2021, 407, 96.
4 Huang Z D, Ma R, Zhou J, et al. Journal of Alloy Compounds, 2021, 873, 159779.
5 Zhang M W, Qu G D, Pang M Y, et al. Materials Reports, 2021, 35(S1), 62 (in Chinese).
张明伟, 曲冠达, 庞梦瑶, 等. 材料导报, 2021, 35(S1), 62.
6 Peng Z H, Cao M S, Yuan J, et al. Journal of Aeronautical Materials, 2003(3), 58 (in Chinese).
彭智慧, 曹茂盛, 袁杰, 等. 航空材料学报, 2003(3), 58.
7 Han H S, Ma J, Zhang H F, et al. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(3), 478 (in Chinese).
韩海生, 马佳, 张海丰, 等. 信阳师范学院学报(自然科学版), 2019, 32(3), 478.
8 Yu X, Lin G, Zhang D, et al. Materials & Design, 2006, 27(8), 700.
9 Wang D, Deng J L, Jiao Y J. Material Protection, 2014, 47(S1), 46 (in Chinese).
王丹, 邓京兰, 焦亚军. 材料保护, 2014, 47(S1), 46.
10 Nicolson A M, Ross G F. IEEE Transactions on Instrumentation and Measurement, 1970, 19(4), 377.
11 Wang T, Zhang J M, Wang P, et al. Journal of Magnetic Materials and Devices, 2016, 47(6), 7 (in Chinese).
王涛, 张峻铭, 王鹏, 等. 磁性材料及器件, 2016, 47(6), 7.
12 Han R. Microwave absorption properties of the easy-plane anisotropy poder/matrix composites. Ph. D. Thesis, Lanzhou University, China, 2013 (in Chinese).
韩瑞. 易面各向异性磁粉复合材料微波吸收性能的研究. 博士学位论文, 兰州大学, 2013
13 Wang T, Han R, Tan G, et al. Journal of Applied Physics, 2012, 112, 104903.
14 Li Z, Wang J J, Gao H T, et al. Chemical Journal of Chinese Universities, 2019, 40(8), 1784 (in Chinese).
李泽, 王建江, 高海涛, 等. 高等学校化学学报, 2019, 40(8), 1784.
15 Wang B C, Wei J Q, Yang Y, et al. Journal of Magnetism and Magnetic Materials, 2011, 323(8), 1101.
16 Naito Y, Yin J F, Mizumoto T. Electronics and Communications in Japan (Part II Electronics), 1988, 71(7), 77
17 Pozar D. Microwave Engineering. 4nd Ed, John Wiley & Sons, New Jersey, 2005.
18 Ma J, Wang X, Cao W, et al. Chemical Engineering Journal, 2018, 339, 487.
19 Xu W, Wang G. Carbon, 2018, 139, 759.
20 Cao M, Han C, Wang X, et al. Journal of Materials Chemistry C, 2018, 6, 4586.
21 Dang Z, Yuan J, Zha J, et al. Progress in Materials Science, 2012, 57(4), 660.
22 Kirkpatrick S. Reviews of Modern Physics, 1973, 45, 574.
23 Gojny F, Wichmann M, Fiedler B, et al. Composites Science and Technology, 2005, 65(15), 2300.
24 Song Y, Youn J. Carbon, 2005, 43(7), 1378.
25 Huang Y, Wang W, Zeng X, et al. Journal of Applied Polymer Science, 2018, 135(32), 46517.
26 Sumita M, Sakata K, Asai S, et al. Polymer Bullettin, 1991, 25(2), 265.
27 Chen Z, Ren W, Gao L, et al. Nature Materials, 2011, 10(6), 424.
28 Chabot V, Higgins D, Yu A, et al. Energy and Environmental Science, 2014, 7(5), 156.
29 Martin J, Tomas C, Suarez-Martinez I, et al. Physical Review Letters, 2019, 123(11), 116105.
30 Sherrell P, Mattevi C. Materials Today, 2016, 19(8), 428.
31 Cao S, Liu H, Yang L, et al. Journal of Magnnetism and Magnetic Materials, 2018, 458, 217.
32 Liu F, Wang C, Tang Q. Small, 2018, 14, 1801458.
33 Ding D, Wang Y, Li X, et al. Carbon, 2016, 111, 722.
34 Zhang X, Li Y, Liu R, et al. ACS Applied Materials & Interfaces, 2016, 8(5), 3439.
35 Lacrevaz T, Flechet B, Farcy A, et al. Microelectronic Engineering, 2006, 83(11), 2184.
36 Li Y, Cao W, Yuan J, et al. Journal of Materials Chemistry, 2015, 3, 9276.
37 Yuan J, Hou Z L, Yang H J, et al. Ceramics International, 2013, 39(6), 7241.
38 Baek K, Lee S, Doh S, et al. Journal of Materials Chemistry C, 2018, 6(36), 9749.
39 Sun S, Chen W, Fang L, et al. Ceramics International, 2018, 44(8), 9942.
40 Cheng T, Qiang Z. Advanced Materials, 2017, 29(13), 1604103.
41 Wei Y, Zhong K, Jiang T, et al. Ceramics International, 2020, 46, 11406.
42 Li X, Cui E, Xiang Z, et al. Journal of Alloys and Compounds, 2020, 819, 152952.
43 Wu T, Liu Y, Zeng X, et al. ACS Applied Materials & Interfaces, 2016, 8(11), 7370.
44 She W, Bi H, Wen Z, et al. ACS Applied Materials & Interfaces, 2016, 8(15), 9782.
45 Huang W, Wei S C, Liang Y, et al. Chinese Journal of Engineering, 2019, 41(5), 547 (in Chinese).
黄威, 魏世丞, 梁义, 等. 工程科学学报, 2019, 41(5), 547.
46 Li W, Lv B, Wang L, et al. RSC Advances, 2014, 4(99), 55738.
47 Tian C, Du Y, Cui C, et al. Journal of Materials Science, 2017, 52(11), 6349.
48 Wang Y, Zhang W, Luo C, et al. Synthetic Metals, 2016, 220, 347.
49 Cole K, Cole R. The Jouranl of Chemiscal Physics, 1941, 9(4), 341.
50 Wang G, Meng X, Zhang X, et al. Journal of Materials Chemistry A, 2014, 2(44), 18725.
51 Wang H, Yan Z, An J, et al. RSC Advances, 2016, 6(95), 92152.
52 Ma Z, Liu Q, Yuan J, et al. Physica Status Solidi (b), 2012, 249(3), 575.
53 Yang W, Li R, Jiang B, et al. Carbon, 2020, 166, 218.
54 Wei H, Zhang Z, Hussain G, et al. Applied Materials Today, 2020, 19, 100596
55 Wang P. High-frequency magnetic and microwave absorbing properties of rare earth-transition metal alloy fractured along easy-magnetization crystal plane. Ph. D. Thesis, Lanzhou University, China, 2020 (in Chinese).
王鹏. 沿易磁化晶面断裂的片状稀土-过渡金属合金高频磁性和吸波性能. 博士学位论文. 兰州大学, 2020.
56 Lv R, Cao A, Kang F, et al. Journal of Physical Chemistry C, 2017, 111(30), 11475.
57 Liu Z W. First-principle study of electronic sturecture and hyperfine fields of low-dimensional Fe, Co and Ni. Master's Thesis. LanZhou University, China, 2006 (in Chinese).
刘在文. 低维Fe, Co, Ni电子结构和超精细场的第一原理研究. 硕士学位论文. 兰州大学, 2006.
58 Zhao X R. Synthesis and characterization of rare earth doped cobalt ferrite nanoparticles. Master's Thesis. Beijing University of Chemical Technology, China, 2015 (in Chinese).
赵溪箬. 稀土掺杂钴铁氧体纳米材料的制备及性能研究. 硕士学位论文. 北京化工大学, 2015.
59 Akhtar M, Sulong A B, Akhtar M N, et al. Journal of Rare Earths, 2018, 36(2), 156.
60 Samad R, Rather M U D, Asokan K, et al. Applied Physics A, 2019, 125(8), 1.
61 Nikzad A, Parvizi R. Journal of Rare Earths, 2020, 38(4), 411.
62 Meza-Aguilar S, Elmouhssine O, Dreyssé H, et al. Computational Materials Science, 2000, 17(2), 464.
63 Yu R, Basu S, Zhang Y, et al. Journal of Applied Physics, 1999, 85(9), 6034.
64 Arnold H D, Elmen G W. The Bell System Technical Journal, 1923, 2(3), 101.
65 Han D H, Wang J P, Feng Y B, et al. Journal of Applied Physics, 1994, 76(10), 6591.
66 Han D H, Wang J P, Luo H L. Journal of Magnetism and Magnetic Materials, 1994, 136(1-2), 176.
67 Khanna S, Linderoth S. Physic Review Letters, 1991, 67(6), 742.
68 Aus M J, Szpunar B, Elsherik A M, et al. Scripta Metallurgica et Mate-rialia, 1992, 27(11), 1639.
69 Billas I, Châtelain A, Heer W. Journal of Magnetism and Magnetic Materials, 1997, 168(1-2), 64.
70 Chen J, Sorensen C, Klabunde K, et al. Journal of Applied Physics, 1994, 76(10), 6316.
71 Chen J, Sorensen C, Klabunde K, et al. Physical Review B-Condensed Matter, 1995, 51(17), 11527.
72 Rao B K, Debiaggi S R, Jena P. Physical Review B-Condensed Matter, 2001, 64(2), 3263.
73 Dormann J, Djega-Mariadassou C, Jove J. Journal of Magnetism and Magnetic Materials, 1992, 104-107(P3), 1562
74 Jiang B, Yang D, Ulyanov A, et al. Journal of Applied Physics, 2004, 95(11), 7115.
75 Herzer G. IEEE Transactions on Magnetics, 1990, 26(5), 1397.
76 Suzuki K, Cadogan J. Physical Review B, 1998, 58(5), 2730
77 Jakubovics J P. Magnetism and metallurgy of soft magnetic materials. Elsevier, North-Holland, 1977.
78 Comstock R L. Introduction to magnetism and magnetic recording. John Wiley & SONS, USA, 1999.
79 Kronmuller H, Goll D. Journal of Iron and Steel Research International, 2006, 13(8), 39.
80 Hilzinger H R. Physica Status Solid, 1976, 38(2), 487.
81 Stoner E C, Wohlfarth E P. IEEE Transactions on Magnetics, 1991, 27(4), 3475.
82 Néel L. Science, 1972, 174(4013), 985.
83 Kronmüller H. Jounal of Applied Physics, 1981, 52(3), 1859.
84 Li Q, Kartikowati C, Horie S, et al. Scientific Reports, 2017, 7, 9894.
85 Lee J S, Cha J, Yoon H, et al. Scientific Reports, 2015, 5(1), 12135.
86 Kim D, Lee N, Park M, et al. Journal of the American Chemical Society, 2009, 131(2), 454.
87 Ma M, Wu Y, Zhou J, et al. Journal of Magnetism and Magnetic Mate-rials, 2004, 268(1), 33.
88 Dijkstra L, Wert C. Physical Review Journals, 1950, 79(6), 979.
89 Mahdikhah V, Ataie A, Babaei A, et al. Ceramics International, 2020, 46(11), 17903.
90 El-Dek S. Philosophical Magazine Letter, 2010, 90, 233.
91 Chen X M, Jiang J J, Bie S W, et al. Electronic Components and Materials, 2011, 30(5), 35 (in Chinese).
陈旭明, 江建军, 别少伟, 等. 电子元件与材料, 2011, 30(5), 35.
92 Zeng Q, Baker I, Mccreary V, et al. Journal of Magnetism and Magnetic Materials, 2007, 318(1-2), 28.
93 Bødker F, Mørup S, Linderoth S. Physical Review Letters, 1994, 72(2), 282.
94 Kittel C. Physical Review, 1948, 73(2), 155.
95 Liu X, Steiner M, Sooryakumar R, et al. Physical Review B-Condensed Matter, 1996, 53(18), 12166.
96 Kaminski M, Rosengart A. Journal of Magnetism and Magnetic Mate-rials, 2005, 293(1), 398.
97 Walser R K, Win W, Valanju P M. IEEE Transactions on Magnetics, 1998, 34(4), 1390.
98 Yang P P. Synthesis and electromagnetic wave absorption properties of several kinds of electromagnetic absorbing materials containing cobalt. Ph. D. Thesis, Beijing Institute of Technology, China, 2017 (in Chinese).
杨珮珮. 几种含钴电磁吸波材料的制备及其吸波性能研究. 博士学位论文, 北京理工大学, 2017.
99 Jia J, Liu C, Ma N, et al. Science and Technology Advanced Materials, 2013, 14(4), 045002.
100 Wen F, Zhang F, Zheng H. Journal of Magnetism and Magnetic Mate-rials, 2012, 324(16), 2471.
101 Wang J, Xu J, Meng X, et al. Materials Research Bulletin, 2014, 49, 176.
102 Li Q, Li Y, Li X, et al. Journal of Alloy Compounds, 2014, 608, 35.
103 Snoek J L. Physica, 1948, 4(4), 207.
104 Xue D, Li F, Fan X, et al. Chinese Physics Letter, 2008, 25(11), 4120.
105 Wang W, Guo J, Long C, et al. Journal of Alloy Compounds, 2015, 637, 106.
106 Zhou T, Zhou P, Liang D, et al. Journal of Alloy Compounds, 2009, 484(1-2), 545.
107 Wu M, He H, Zhao Z, et al. Journal of Physics D:Applied Physics, 2000, 33(22), 2927.
108 Li X, Gong R, He H, et al. IEEE Transactions on Magnetics, 2009, 44(12), 4567.
109 Guo C, Yang Z, Shen S, et al. Journal of Magnetism and Magnetic Materials, 2018, 454(1), 32.
110 Ma Z. Preparation and high frequency research on micro and nano magnetic magnetic materials. Ph. D. Thesis, Lanzhou University, China, 2012 (in Chinese).
马治. 磁性微米纳米材料的制备及其高频磁性研究. 博士学位论文, 兰州大学, 2012.
111 Toneguzzo P, Viau G, Acher O, et al. Journal of Materials Science, 2000, 35(15), 3767.
112 Viau G, Toneguzzo P, Pierrard A, et al. Scripta Materialia, 2001, 44(8-9), 2263.
113 Shah A, Wang Y, Huang H, et al. Composite Structures, 2015, 131, 1132.
114 Aharoni A. Jounal of Applied Physics, 1991, 69(11), 7762.
115 Toneguzzo P, Viau G, Acher O, et al. Advanced Materials, 1998, 10(13), 1032.
116 Liu T, Zhou P H, Liang D F, et al. Journal of Alloy Compounds, 2012, 524(21), 1.
117 Ma J, Li J, Ni X, et al. Applied Physics Letter, 2009, 95, 102505.
[1] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[2] 段广宇, 李玥, 胡静文, 胡祖明, 于翔, 迟长龙. 耐高温聚间苯二甲酰间苯二胺介电复合材料的制备及性能[J]. 材料导报, 2022, 36(4): 20120097-6.
[3] 肖维新, 袁静, 严开祺, 张敬杰. 生物聚合物气凝胶的制备与应用研究进展[J]. 材料导报, 2022, 36(20): 21030322-10.
[4] 崔立龙, 凌天清, 曾凡贵, 梁丽娟, 李汝凯. 基于探地雷达的密级配覆水沥青层的空隙率检测[J]. 材料导报, 2021, 35(4): 4092-4098.
[5] 张静茹, 张志昂, 韩笑, 房蕊, 徐若歆, 赵丽丽. 提高PVDF基有机-无机柔性复合膜储能密度的研究新进展[J]. 材料导报, 2021, 35(23): 23162-23170.
[6] 魏玉鹏, 朱俊志, 蔺景鹏, 申永前, 江恬恬, 李庆林, 王海燕, 喇培清. 碳微/纳米纤维复合微波吸收材料的研究进展[J]. 材料导报, 2021, 35(15): 15205-15211.
[7] 乌李瑛, 柏荣旭, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. NH3和N2混合等离子体预处理对锗MOS器件性能的影响[J]. 材料导报, 2021, 35(14): 14012-14016.
[8] 池强, 谢磊, 常良, 李强, 董亚强. 羰基铁粉/FeSiBCCr复合非晶磁粉芯的性能[J]. 材料导报, 2021, 35(10): 10023-10028.
[9] 王桂平, 喻伯鸣, 敖日格勒. 木质素基磁性多孔复合纳米碳纤维的制备及微波吸收性能[J]. 材料导报, 2020, 34(20): 20159-20164.
[10] 汪心坤, 赵芳, 王建江. 煅烧温度对Zn0.96Co0.04O纳米纤维吸波性能的影响[J]. 材料导报, 2020, 34(14): 14034-14038.
[11] 郑晗煜, 蒲永平, 李来平, 薛建嵘, 高选乔, 胡忠武, 任广鹏. 储能介电玻璃陶瓷的制备及研究进展[J]. 材料导报, 2019, 33(Z2): 20-23.
[12] 汪心坤, 赵芳, 王建江. Zn1-xCexO纳米纤维的电纺制备及其红外雷达兼容隐身性能[J]. 材料导报, 2019, 33(Z2): 83-88.
[13] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[14] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[15] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed